Fr. 134.00

Study of Double Parton Scattering Using Four-Jet Scenarios - in Proton-Proton Collisions at sqrt s = 7 TeV with the CMS Experiment at the LHC

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis addresses in a very new and elegant way several measurements and the extraction of so-called double parton scattering. The new and elegant way lies in the combination of measurements and a very smart extraction of double parton scattering results, which is easy to apply and overcomes many of the technical difficulties of older methods. Many new phenomena in particle physics can be observed when particles are collided at the highest energies; one of the highlights in recent years was the discovery of the Higgs boson at the Large Hadron Collider at CERN. Understanding the production mechanism of the Higgs boson at the LHC requires detailed knowledge of the physics of proton-proton collisions. When the density of partons in the protons becomes large, there is a non-negligible probability that more than one parton participates in the interaction and the so-called double parton scattering becomes important. In some cases very particular final state signatures can be observed, which can be regarded as an indication of such double partonic scattering and where the different interactions can be separated. Such multiple partonic interactions play an important role when precise predictions from known processes are required.

List of contents

The Standard Model of Particle Physics.- A Hadronic Collision.- The CERN Large Hadron Collider and the Compact Muon Solenoid Experiment.- Event Simulation.- Event Reconstruction.- Event Selection.- Study of Detector Effects.- Data Unfolding.- Systematic Uncertainties.- Cross Section Measurement of the 4j and 2b2j Channels and Comparisons with Predictions.- Extraction of the DPS Contribution.- Summary and Conclusions.

About the author

A member of the CMS collaboration since 2012, Paolo Gunnellini received his PhD degree in 2014 with a joint project between the University of Hamburg and the University of Antwerpen. He mainly worked in Quantum Chromodynamics with a special focus on multiparton interactions in proton-proton collisions. Author of several phenomenological and experimental papers, he presented his results in various international conferences. Before his PhD, he worked also in the NA62 experiment at CERN in Geneva and he took part in two summer student programmes: in 2008 at CERN, Geneva and in 2011 at DESY, Hamburg. Currently, he works as a researcher at DESY, Hamburg within the CMS collaboration, and is looking forward to analysing the new upcoming data from the Large Hadron Collider.

Summary

This thesis addresses in a very new and elegant way several measurements and the extraction of so-called double parton scattering. The new and elegant way lies in the combination of measurements and a very smart extraction of double parton scattering results, which is easy to apply and overcomes many of the technical difficulties of older methods. Many new phenomena in particle physics can be observed when particles are collided at the highest energies; one of the highlights in recent years was the discovery of the Higgs boson at the Large Hadron Collider at CERN. Understanding the production mechanism of the Higgs boson at the LHC requires detailed knowledge of the physics of proton-proton collisions. When the density of partons in the protons becomes large, there is a non-negligible probability that more than one parton participates in the interaction and the so-called double parton scattering becomes important. In some cases very particular final state signatures can be observed, which can be regarded as an indication of such double partonic scattering and where the different interactions can be separated. Such multiple partonic interactions play an important role when precise predictions from known processes are required.

Product details

Authors Paolo Gunnellini
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2015
 
EAN 9783319222127
ISBN 978-3-31-922212-7
No. of pages 279
Dimensions 162 mm x 21 mm x 242 mm
Weight 561 g
Illustrations XX, 279 p. 125 illus., 55 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.