Fr. 135.00

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context.
Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert.
This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating, (3) using tactile feedback to augment the visual perception, and (4) learning novel manipulation tasks from human demonstrations.
This book is an ideal resource for postgraduates and researchers working in robotics, computer vision, and artificial intelligence who want to get an overview on one of the following subjects:
· kinematic modeling and learning,
· self-calibration and life-long adaptation,
· tactile sensing and tactile object recognition, and
· imitation learning and programming by demonstration.

List of contents

Introduction.- Basics.- Body Schema Learning.- Learning Kinematic Models of Articulated Objects.- Vision-based Perception of Articulated Objects.- Object Recognition using Tactile Sensors.- Object State Estimation using Tactile Sensors.- Learning Manipulation Tasks by Demonstration.- Conclusions.

Summary

Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context.
Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert.
This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating, (3) using tactile feedback to augment the visual perception, and (4) learning novel manipulation tasks from human demonstrations.
This book is an ideal resource for postgraduates and researchers working in robotics, computer vision, and artificial intelligence who want to get an overview on one of the following subjects:
·         kinematic modeling and learning,
·         self-calibration and life-long adaptation,
·         tactile sensing and tactile object recognition, and
·         imitation learning and programming by demonstration.

Additional text

From the reviews:
“This book is convenient for research purposes. It has a clear structure and is fairly readable. The topic may be appropriate for graduate studies.” (Ramon Gonzalez Sanchez, Computing Reviews, January, 2014)

Report

From the reviews:
"This book is convenient for research purposes. It has a clear structure and is fairly readable. The topic may be appropriate for graduate studies." (Ramon Gonzalez Sanchez, Computing Reviews, January, 2014)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.