Fr. 168.00

Integral Operators in Non-Standard Function Spaces - Volume 1: Variable Exponent Lebesgue and Amalgam Spaces

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them.
The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria.
The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematicsand prospective students.

List of contents

_Preface.- I: Variable Exponent Lebesgue and Amalgam spaces.- 1 Hardy Type Operators.- 2 Oscillating weights.- 3 Kernel Integral Operators.- 4 Two-Weight Estimates.- 5 One-sided Operators.- 6 Two-weight Inequalities for Fractional Maximal Functions.- 7 Hypersingular Integrals.- 8 Description of the Range of Potentials 213.- 9 More on Compactness.- 10 Applications to Singular Integral Equations.- II: Hölder Spaces of Variable Order.- 11 Variable Order Hölder Spaces.- III: Variable Exponent Morrey-Campanato and Herz Spaces.- 12 Morrey Type Spaces; Constant Exponents.- 13 Morrey Type Spaces; Variable Exponents.- Bibliography.- Symbol Index.- Subject Index.

Summary

This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them.
The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria.
The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematicsand prospective students.

Additional text

“The book is intended for researchers working in diverse branches of analysis and its applications.” (Boris Rubin, zbMATH 1385.47001, 2018)

“The entire book presents a complete picture of the area in a consecutive way. It could be seen as a short encyclopedia that is very useful as a basis for deeper study but also for further research in the area.” (Nikos Labropoulos, Mathematical Reviews, August, 2017)

Report

"The book is intended for researchers working in diverse branches of analysis and its applications." (Boris Rubin, zbMATH 1385.47001, 2018)

"The entire book presents a complete picture of the area in a consecutive way. It could be seen as a short encyclopedia that is very useful as a basis for deeper study but also for further research in the area." (Nikos Labropoulos, Mathematical Reviews, August, 2017)

Product details

Authors Vakhtan Kokilashvili, Vakhtang Kokilashvili, Alexande Meskhi, Alexander Meskhi, Rafeiro, Humberto Rafeiro, Stefan Samko
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2016
 
EAN 9783319210148
ISBN 978-3-31-921014-8
No. of pages 567
Dimensions 165 mm x 241 mm x 39 mm
Weight 1030 g
Illustrations XX, 567 p.
Series Operator Theory: Advances and Applications
Birkhäuser
Operator Theory: Advances and Applications
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

B, Mathematics and Statistics, Functional Analysis, Functional analysis & transforms, Operator Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.