Fr. 134.00

Spin-Orbit-Induced Spin Textures of Unoccupied Surface States on Tl/Si(111)

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis describes the construction of a rotatable spin-polarized electron source and its use in spin- and angle-resolved inverse photoemission to investigate the unoccupied electron states of Tl/Si(111)-(1x1) with special emphasis on their spin texture. Towards more efficient electronics - with the electron spin as information carrier: This motto is the motivation for numerous studies in solid state physics that deal with electron states whose spin degeneracy is lifted by spin-orbit interaction. This thesis addresses the spin-orbit-induced spin textures in momentum space in the surface electronic structure of a prototypical Rashba-type hybrid system: heavy metal thallium on semiconducting silicon. For Tl/Si(111)-(1x1), the thallium adlayer provides surface states with strong spin-orbit interaction and peculiar spin-orbit-induced spin textures: spin rotations and spin chirality in momentum space for unoccupied surface states with giant spin splittings. Almost completely out-of-plane spin-polarized valleys in the vicinity of the Fermi level are identified. As the valley polarization is oppositely oriented at specific points in momentum space, backscattering should be strongly suppressed in this system.

List of contents

Introduction.- Experiment.- Spin Textures on Tl/Si(111)-(1×1).- Summary.

About the author

Sebastian David Stolwijk was born in Münster, Germany, in 1985. After receiving his Diploma in physics with distinction from the Westfälische Wilhelms-Universität Münster in 2009, he continued his work in the field of spin phenomena in low-dimensional systems in the group of Prof. Dr. Markus Donath. In 2014, he earned the doctoral degree (Dr. rer. nat.) summa cum laude from the Westfälische Wilhelms-Universität Münster.

Summary

This thesis describes the construction of a rotatable spin-polarized electron source and its use in spin- and angle-resolved inverse photoemission to investigate the unoccupied electron states of Tl/Si(111)-(1x1) with special emphasis on their spin texture. Towards more efficient electronics - with the electron spin as information carrier: This motto is the motivation for numerous studies in solid state physics that deal with electron states whose spin degeneracy is lifted by spin-orbit interaction. This thesis addresses the spin-orbit-induced spin textures in momentum space in the surface electronic structure of a prototypical Rashba-type hybrid system: heavy metal thallium on semiconducting silicon. For Tl/Si(111)-(1x1), the thallium adlayer provides surface states with strong spin-orbit interaction and peculiar spin-orbit-induced spin textures: spin rotations and spin chirality in momentum space for unoccupied surface states with giant spin splittings. Almost completely out-of-plane spin-polarized valleys in the vicinity of the Fermi level are identified. As the valley polarization is oppositely oriented at specific points in momentum space, backscattering should be strongly suppressed in this system.

Product details

Authors Sebastian David Stolwijk
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2015
 
EAN 9783319187617
ISBN 978-3-31-918761-7
No. of pages 80
Dimensions 162 mm x 8 mm x 244 mm
Weight 268 g
Illustrations XVII, 80 p. 38 illus., 36 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.