Fr. 69.00

Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces - A Sharp Theory

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.


List of contents

Introduction. - Geometry of Quasi-Metric Spaces.- Analysis on Spaces of Homogeneous Type.- Maximal Theory of Hardy Spaces.- Atomic Theory of Hardy Spaces.- Molecular and Ionic Theory of Hardy Spaces.- Further Results.- Boundedness of Linear Operators Defined on Hp(X).- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces.

Summary

Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry. 

Product details

Authors Rya Alvarado, Ryan Alvarado, Marius Mitrea
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2015
 
EAN 9783319181318
ISBN 978-3-31-918131-8
No. of pages 486
Dimensions 155 mm x 236 mm x 27 mm
Weight 745 g
Illustrations VIII, 486 p. 17 illus., 12 illus. in color.
Series Lecture Notes in Mathematics
Lecture Notes in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, measure theory, Mathematics and Statistics, Functional Analysis, Real Functions, Partial Differential Equations, Differential calculus & equations, Functions of real variables, Integral calculus & equations, Functional analysis & transforms, Measure and Integration, Fourier Analysis, Real analysis, real variables

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.