Fr. 219.00

Silicon Carbide - 2: Silicon Carbide. Vol.2 - Power Devices and Sensors

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

Silicon Carbide - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles.
This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters.
The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.

List of contents

1) Present Status and Future Prospects for Electronics in EVs/HEVs and Expectations for Wide Bandgap Semiconductor Devices
2) Silicon Carbide power devices - Status and upcoming challenges with a special attention to industrial application
3) Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts
4) Reliability aspects of SiC Schottky Diodes
5) Design, process, and performance of all-epitaxial normally-off SiC JFETs
6) Extreme Temperature SiC Integrated Circuit Technology
7) 1200 V SiC Vertical-channel-JFET based cascode switches
8) Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors
9) High electron mobility ahieved in n-channel 4H-SiC MOSFETs oxidized in the presence of nitrogen
10) 4H-SiC MISFETs with Nitrogen-containing Insulators
11) SiC Inversion Mobility
12) Development of SiC diodes, power MOSFETs and intellegent Power Modules
13) Reliability issues of 4H-SiC power MOSFETs toward high junction temperature operation
14) Application of SiC-Transistors in Photovoltaic-Inverters
15) Design and Technology Considerations for SiC Bipolar Devices: BJTs, IGBTs,and GTOs
16) Suppressed surface recombination structure and surface passivation for improving current gain of 4H-SiC BJTs
17) SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection

About the author

Dr. Peter Friedrichs is Managing Director at SiCED, a Siemens Company located in Erlangen. SiCED develops technologies for SiC power semiconductors and systems based on these devices. Their research is devoted to device design and simulation as well as the characterization of devices via end of life tests.

Tsunenobu Kimoto, Professor at the Department of Electronic Science and Engineering at Kyoto University, Japan, has dedicated his work to research on the growth and characterization of wide bandgap semiconductors, the process technology and physics of SiC devices. He has authored over 300 scientific publications.

Lothar Ley is recently retired as Professor of Physics and Head of the Institute of Technical Physics at the University of Erlangen, Germany. From 2002 to 2008 he was speaker of the interdisciplinary Research Unit (DFG Forschergruppe) 'Silicon carbide as semiconductor material: novel aspects of crystal growth and doping'. Alongside its experimental research on SiC, his group currently also works on Diamond, Carbon Nanotubes, and Graphene. He has authored and co-authored over 400 scientific publications.

Summary

Silicon Carbide - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles.
This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters.
The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.

Report

"Hence, the two volumes provide an invaluable source of information for everybody working with SiC or generally interested in the current and future state of power electronics." (Int. Journal of Microstructure and Materials Properties, 2011)

Product details

Authors Peter Friedrichs, Tsunenobu Kimoto, Lothar Ley, Gerhard Pensl
Assisted by Peter Friedrichs (Editor), Tsunenob Kimoto (Editor), Tsunenobu Kimoto (Editor), Lothar Ley (Editor), Lothar Ley et al (Editor), Gerhard Pensl (Editor)
Publisher Wiley-VCH
 
Languages English
Product format Hardback
Released 31.03.2015
 
EAN 9783527409976
ISBN 978-3-527-40997-6
No. of pages 500
Dimensions 178 mm x 243 mm x 31 mm
Weight 1054 g
Illustrations 405 SW-Abb., 35 Tabellen
Set Silicon Carbide
Series Silicon Carbide
Silicon Carbide
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Physik, Halbleiter, Physics, Electronic materials, Semiconductors, Electrical & Electronics Engineering, Elektrotechnik u. Elektronik, Elektronische Materialien, Halbleiterphysik, Semiconductor Physics, Siliziumkarbid

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.