Fr. 187.00

Geometrical Foundations of Continuum Mechanics - An Application to First- and Second-Order Elasticity and Elasto-Plasticity

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book illustrates the deep roots of the geometrically nonlinear kinematics of
generalized continuum mechanics in differential geometry. Besides applications to first-
order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating
for generalized models of continuum mechanics such as second-order (gradient-type)
elasticity and elasto-plasticity.

After a motivation that arises from considering geometrically linear first- and second-
order crystal plasticity in Part I several concepts from differential geometry, relevant
for what follows, such as connection, parallel transport, torsion, curvature, and metric
for holonomic and anholonomic coordinate transformations are reiterated in Part II.
Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics
are considered. There various concepts of differential geometry, in particular aspects
related to compatibility, are generically applied to the kinematics of first- and second-
order geometrically nonlinear continuum mechanics. Together with the discussion on
the integrability conditions for the distortions and double-distortions, the concepts
of dislocation, disclination and point-defect density tensors are introduced. For
concreteness, after touching on nonlinear fir
st- and second-order elasticity, a detailed
discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity
is given. The discussion naturally culminates in a comprehensive set of different types
of dislocation, disclination and point-defect density tensors. It is argued, that these
can potentially be used to model densities of geometrically necessary defects and the
accompanying hardening in crystalline materials. Eventually Part IV summarizes the
above findings on integrability whereby distinction is made between the straightforward
conditions for the distortion and the double-distortion being integrable and the more
involved conditions for the strain (metric) and the double-strain (connection) being
integrable.

The book addresses readers with an interest in continuum modelling of solids from
engineering and the sciences alike, whereby a sound knowledge of tensor calculus and
continuum mechanics is required as a prerequisite.


List of contents

Part I Prologue.- Part II Differential Geometry.- Part III Nonlinear Continuum Mechanics.- Part IV Epilogue.

Summary

This book illustrates the deep roots of the geometrically nonlinear kinematics of
generalized continuum mechanics in differential geometry. Besides applications to first-
order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating
for generalized models of continuum mechanics such as second-order (gradient-type)
elasticity and elasto-plasticity.
 
After a motivation that arises from considering geometrically linear first- and second-
order crystal plasticity in Part I several concepts from differential geometry, relevant
for what follows, such as connection, parallel transport, torsion, curvature, and metric
for holonomic and anholonomic coordinate transformations are reiterated in Part II.
Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics
are considered. There various concepts of differential geometry, in particular aspects
related to compatibility, are generically applied to the kinematics of first- and second-
order geometrically nonlinear continuum mechanics. Together with the discussion on
the integrability conditions for the distortions and double-distortions, the concepts
of dislocation, disclination and point-defect density tensors are introduced. For
concreteness, after touching on nonlinear fir
st- and second-order elasticity, a detailed

discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity
is given. The discussion naturally culminates in a comprehensive set of different types
of dislocation, disclination and point-defect density tensors. It is argued, that these
can potentially be used to model densities of geometrically necessary defects and the
accompanying hardening in crystalline materials. Eventually Part IV summarizes the
above findings on integrability whereby distinction is made between the straightforward
conditions for the distortion and the double-distortion being integrable and the more
involved conditions for the strain (metric) and the double-strain (connection) being
integrable.
 
The book addresses readers with an interest in continuum modelling of solids from
engineering and the sciences alike, whereby a sound knowledge of tensor calculus and
continuum mechanics is required as a prerequisite.
 
 

Additional text

“This new, comprehensive book by P. Steinmann consists of three main parts. … This book is of very high rigor, scope, and quality, written by an expert in the field, and is thus strongly recommended as a reference for scholars and advanced graduate students. It could also possibly serve as a textbook or supplementary reference for graduate or professional level course(s).” (John D. Clayton, Mathematical Reviews, August, 2015)

Report

"This new, comprehensive book by P. Steinmann consists of three main parts. ... This book is of very high rigor, scope, and quality, written by an expert in the field, and is thus strongly recommended as a reference for scholars and advanced graduate students. It could also possibly serve as a textbook or supplementary reference for graduate or professional level course(s)." (John D. Clayton, Mathematical Reviews, August, 2015)

Product details

Authors Paul Steinmann
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 31.07.2015
 
EAN 9783662464595
ISBN 978-3-662-46459-5
No. of pages 517
Dimensions 157 mm x 30 mm x 238 mm
Weight 819 g
Illustrations XXIV, 517 p. 59 illus.
Series Lecture Notes in Applied Mathematics and Mechanics
Lecture Notes in Applied Mathematics and Mechanics
Subject Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.