Fr. 135.00

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

List of contents

1 Introduction 1.1 Basic Concepts 2 Algebraic Approach 2.1 Point Transformations 2.2 Contact Transformations 2.3 Transformations Relating Differential Equations 2.4 Linearizing and Bilinearizing Transformations 2.5 Reductions of Nonlinear PDEs 2.6 Separation of Variables 2.7 Transformation Groups 2.8 Nonlinear Systems 3 Geometric-Qualitative Approach 3.1 Method of Characteristics 3.2 Generalized Method of Characteristics 3.3 Qualitative Analysis 4 General Analytical Approach. Integrability 4.1 Painlevé Test and Integrability 4.2 Complete Integrability. Evolution Equations 4.3 Nonlinear Systems. Integrability Conditions 5 Approximate Analytical Approach 5.1 Adomian Decomposition Method 5.2 Asymptotic Expansions. Perturbation Methods 6 Numerical Approach 6.1 Embedded Numerical Methods 6.2 Finite DifferenceMethods 7 Analytical-Numerical Approach 7.1 Method of Lines 7.2 Spectral Collocation Method; A Brief Description of Maple A.1 Introduction A.2 Basic Concepts A.3 Maple Language B Brief Description of Mathematica B.1 Introduction B.2 Basic Concepts B.3 Mathematica Language; References, Index

Summary

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

Additional text

From the reviews:
“The authors consider the problem of constructing closed-form and approximate solutions to nonlinear partial differential equations with the help of computer algebra systems. … The book will be useful for readers who want to try modern methods for solving nonlinear partial differential equations on concrete examples without bothering too much about the mathematics behind the methods. Thus it is mainly of interest for applied scientists. Mathematicians may use it in connection with more theoretical works; some references are given throughout the book.” (Werner M. Seiler, Zentralblatt MATH, Vol. 1233, 2012)

Report

From the reviews:
"The authors consider the problem of constructing closed-form and approximate solutions to nonlinear partial differential equations with the help of computer algebra systems. ... The book will be useful for readers who want to try modern methods for solving nonlinear partial differential equations on concrete examples without bothering too much about the mathematics behind the methods. Thus it is mainly of interest for applied scientists. Mathematicians may use it in connection with more theoretical works; some references are given throughout the book." (Werner M. Seiler, Zentralblatt MATH, Vol. 1233, 2012)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.