Read more
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors.
The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
List of contents
Present State of Electron Backscatter Diffraction and Prospective Developments.- Dynamical Simulation of Electron Backscatter Diffraction Patterns.- Representations of Texture.- Energy Filtering in EBSD.- Spherical Kikuchi Maps and Other Rarities.- Application of Electron Backscatter Diffraction to Phase Identification.- Phase Identification Through Symmetry Determination in EBSD Patterns.- Three-Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mapping in a FIB-SEM.- Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets.- 3D Reconstruction of Digital Microstructures.- Direct 3D Simulation of Plastic Flow from EBSD Data.- First-Order Microstructure Sensitive Design Based on Volume Fractions and Elementary Bounds.- Second-Order Microstructure Sensitive Design Using 2-Point Spatial Correlations.- Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool.- Grain Boundary Networks.- Measurement of the Five-Parameter Grain Boundary Distribution from Planar Sections.- Strain Mapping Using Electron Backscatter Diffraction.- Mapping and Assessing Plastic Deformation Using EBSD.- Analysis of Deformation Structures in FCC Materials Using EBSD and TEM Techniques.- Application of EBSD Methods to Severe Plastic Deformation (SPD) and Related Processing Methods.- Applications of EBSD to Microstructural Control in Friction Stir Welding/Processing.- Characterization of Shear Localization and Shock Damage with EBSD.- Texture Separation for ?/? Titanium Alloys.- A Review of In Situ EBSD Studies.- Electron Backscatter Diffraction in Low Vacuum Conditions.- EBSD in the Earth Sciences: Applications, Common Practice, and Challenges.- Orientation Imaging Microscopy in Research on High Temperature Oxidation.
About the author
Brent L. Adams is Dusenberry Professor of Mechanical Engineering at Brigham Young University. From 1976-80 he was Senior Research Engineer for Babcock and Wilcox Company. He has been a professor of materials science at the University of Florida and Carnegie Mellon University, and a professor of mechanical engineering at Yale University and Brigham Young University. He was recipient of a National Science Foundation Presidential Young Investigator Award (1985-1990). Professor Adams directed the team of researchers that developed the orientation imaging microscope, which is now used by over 400 laboratories some 30 countries of the world to advance the development of materials. He is the author of 170 papers and five edited proceedings.
Summary
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors.
The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.