Fr. 69.00

Complex Kleinian Groups

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.

List of contents

Preface.- Introduction.- Acknowledgments.- 1 A glance of the classical theory.- 2 Complex hyperbolic geometry.- 3 Complex Kleinian groups.- 4 Geometry and dynamics of automorphisms of P2C.- 5 Kleinian groups with a control group.- 6 The limit set in dimension two.- 7 On the dynamics of discrete subgroups of PU(n,1).- 8 Projective orbifolds and dynamics in dimension two.- 9 Complex Schottky groups.- 10 Kleinian groups and twistor theory.- Bibliography.- Index.

Summary

This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.​

Additional text

From the reviews:
“The book is written in a clear, accessible manner and selected chapters could easily serve as a text for a graduate course on this topic. It also brings together many results published by the authors, their collaborators and others on this topic, as well as giving open questions and directions for future research.” (John R. Parker, Mathematical Reviews, February, 2014)
“A wonderful monograph on complex Kleinian groups which is of great interest for researchers and graduate students in the area of complex Kleinian groups and hyperbolic geometry. Each individual chapter is a unit by itself. … The monograph is very well written and structured. … I strongly recommend it.” (Gerhard Rosenberger, zbMATH, Vol. 1267, 2013)

Report

From the reviews:

"The book is written in a clear, accessible manner and selected chapters could easily serve as a text for a graduate course on this topic. It also brings together many results published by the authors, their collaborators and others on this topic, as well as giving open questions and directions for future research." (John R. Parker, Mathematical Reviews, February, 2014)
"A wonderful monograph on complex Kleinian groups which is of great interest for researchers and graduate students in the area of complex Kleinian groups and hyperbolic geometry. Each individual chapter is a unit by itself. ... The monograph is very well written and structured. ... I strongly recommend it." (Gerhard Rosenberger, zbMATH, Vol. 1267, 2013)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.