Fr. 135.00

Statistical Models of Shape - Optimisation and Evaluation

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The goal of image interpretation is to convert raw image data into me- ingful information. Images are often interpreted manually. In medicine, for example, a radiologist looks at a medical image, interprets it, and tra- lates the data into a clinically useful form. Manual image interpretation is, however, a time-consuming, error-prone, and subjective process that often requires specialist knowledge. Automated methods that promise fast and - jective image interpretation have therefore stirred up much interest and have become a signi?cant area of research activity. Early work on automated interpretation used low-level operations such as edge detection and region growing to label objects in images. These can p- ducereasonableresultsonsimpleimages,butthepresenceofnoise,occlusion, andstructuralcomplexity oftenleadstoerroneouslabelling. Furthermore,- belling an object is often only the ?rst step of the interpretation process. In order to perform higher-level analysis, a priori information must be incor- rated into the interpretation process. A convenient way of achieving this is to use a ?exible model to encode information such as the expected size, shape, appearance, and position of objects in an image. The use of ?exible models was popularized by the active contour model, or 'snake' [98]. A snake deforms so as to match image evidence (e.g., edges) whilst ensuring that it satis?es structural constraints. However, a snake lacks speci?city as it has little knowledge of the domain, limiting its value in image interpretation.

List of contents

Statistical Models of Shape and Appearance.- Establishing Correspondence.- Objective Functions.- Re-parameterisation of Open and Closed Curves.- Parameterisation and Re-parameterisation of Surfaces.- Optimisation.- Non-parametric Regularization.- Evaluation of Statistical Models.

Summary

The goal of image interpretation is to convert raw image data into me- ingful information. Images are often interpreted manually. In medicine, for example, a radiologist looks at a medical image, interprets it, and tra- lates the data into a clinically useful form. Manual image interpretation is, however, a time-consuming, error-prone, and subjective process that often requires specialist knowledge. Automated methods that promise fast and - jective image interpretation have therefore stirred up much interest and have become a signi?cant area of research activity. Early work on automated interpretation used low-level operations such as edge detection and region growing to label objects in images. These can p- ducereasonableresultsonsimpleimages,butthepresenceofnoise,occlusion, andstructuralcomplexity oftenleadstoerroneouslabelling. Furthermore,- belling an object is often only the ?rst step of the interpretation process. In order to perform higher-level analysis, a priori information must be incor- rated into the interpretation process. A convenient way of achieving this is to use a ?exible model to encode information such as the expected size, shape, appearance, and position of objects in an image. The use of ?exible models was popularized by the active contour model, or ‘snake’ [98]. A snake deforms so as to match image evidence (e.g., edges) whilst ensuring that it satis?es structural constraints. However, a snake lacks speci?city as it has little knowledge of the domain, limiting its value in image interpretation.

Product details

Authors Rhodr Davies, Rhodri Davies, Chris Taylor, Carol Twining, Carole Twining
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2014
 
EAN 9781447160427
ISBN 978-1-4471-6042-7
No. of pages 302
Dimensions 155 mm x 17 mm x 235 mm
Weight 486 g
Illustrations XII, 302 p.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Application software

C, Mustererkennung, Bildverarbeitung, computer science, Computer Vision, Image Processing and Computer Vision, pattern recognition, Computer Imaging, Vision, Pattern Recognition and Graphics, Automated Pattern Recognition, Optical data processing, Image processing, Pattern recognition systems

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.