Read more
Informationen zum Autor Qipeng Guo, DSc, DEng , is the chair professor in polymer science and technology at Deakin University, Australia, where he was awarded a Personal Chair in recognition of his distinguished achievements and international reputation in polymer research, involving both the fundamental principles in polymer science and the development of new polymer materials. He is a Fellow of The Royal Society of Chemistry. Klappentext With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods.* Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology* Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography* Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites* Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials Zusammenfassung With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. Inhaltsverzeichnis PREFACE xiii LIST OF CONTRIBUTORS xv PART I PRINCIPLES AND METHODS OF CHARACTERIZATION 1 1 Overview and Prospects of Polymer Morphology 3 Jerold M. Schultz 1.1 Introductory Remarks 3 1.2 Experimental Avenues of Morphological Research 4 1.2.1 Morphological Characterization: The Enabling of in situ Measurements 4 1.2.2 Morphology-Property Investigation 5 1.2.3 Morphology Development 7 1.3 Modeling and Simulation 8 1.3.1 Self-Generated Fields 9 1.4 Wishful Thinking 11 1.5 Summary 11 References 12 2 X-ray Diffraction from Polymers 14 N. Sanjeeva Murthy 2.1 Introduction 14 2.2 Basic Principles 14 2.3 Instrumentation 16 2.4 Structure Determination 17 2.4.1 Lattice Dimensions 17 2.4.2 Molecular Modeling 18 2.4.3 Rietveld Method 18 2.4.4 Pair Distribution Functions 18 2.5 Phase Analysis 19 2.5.1 Crystallinity Determination 20 2.5.2 Composition Analysis 21 2.6 Crystallite Size and Disorder 21 2.7 Orientation Analysis 22 2.7.1 Crystalline Orientation 22 2.7.2 Uniaxial Orientation 22 2.7.3 Biaxial Orientation 24 2.7.4 Amorphous Orientation 25 2.8 Small-Angle Scattering 25 2.8.1 Central Diffuse Scattering 26 2.8.2 Discrete Reflections from Lamellar Structures 27 2.8.3 Small-Angle Neutron Scattering and Solvent Diffusion 29 2.9 Specialized Measurements 30 2.9.1 In situ Experiments 30 2.9.2 Microbeam Diffraction 31 2.9.3 Grazing Incidence Diffraction 32 2.10 Summary 33 References 33 3 Electron Microscopy of Polymers 37 Goerg H. Michler and Werner Lebek 3.1 Introduction 37 3.2 Microscopic Techniques 37 3.2.1 Scanning Electron Microscopy (SEM) 37 3.2.2 Transmission Electron Microscopy (TEM) 42 3.2.3 Comparison of Different Microscopic Techniques 45 3.2.4 Image Processing and Image Analysis 46 3.3 Sample Preparation 47 3.4 In situ Microscopy 50 References 52 4 Characterization of Polymer Morphology by Scattering Techniques 54 Jean-...