Fr. 69.00

Action-Minimizing Methods in Hamiltonian Dynamics - An Introduction to Aubry-Mather Theory

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic.

Starting with the mathematical background from which Mather's theory was born, Alfonso Sorrentino first focuses on the core questions the theory aims to answer-notably the destiny of broken invariant KAM tori and the onset of chaos-and describes how it can be viewed as a natural counterpart of KAM theory. He achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. Sorrentino then describes the whole theory and its subsequent developments and applications in their full generality.

Shedding new light on John Mather's revolutionary ideas, this book is certain to become a foundational text in the modern study of Hamiltonian systems.


About the author










Alfonso Sorrentino is associate professor of mathematics at the University of Rome "Tor Vergata" in Italy. He holds a PhD in mathematics from Princeton University.

Summary

John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach—known as Aubry-Mather theory—singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather’s theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic.

Starting with the mathematical background from which Mather’s theory was born, Alfonso Sorrentino first focuses on the core questions the theory aims to answer—notably the destiny of broken invariant KAM tori and the onset of chaos—and describes how it can be viewed as a natural counterpart of KAM theory. He achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. Sorrentino then describes the whole theory and its subsequent developments and applications in their full generality.

Shedding new light on John Mather’s revolutionary ideas, this book is certain to become a foundational text in the modern study of Hamiltonian systems.

Product details

Authors Alfonso Sorrentino, Sorrentino Alfonso
Publisher Princeton University Press
 
Languages English
Product format Paperback / Softback
Released 26.05.2015
 
EAN 9780691164502
ISBN 978-0-691-16450-2
No. of pages 128
Series Mathematical Notes
Mathematical Notes
Subjects Natural sciences, medicine, IT, technology > Mathematics > Basic principles

MATHEMATICS / Differential Equations / General, Differential calculus & equations, Differential calculus and equations

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.