Fr. 89.00

Cauchy Problem for Non Lipschitz Semi Linear Parabolic Partial - Differential Equation

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor J. C. Meyer is University Fellow in the School of Mathematics at the University of Birmingham, UK. His research interests are in reaction-diffusion theory. Klappentext Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs. Zusammenfassung A monograph containing significant new developments in the theory of reaction-diffusion systems! particularly those arising in chemistry and life sciences. Inhaltsverzeichnis 1. Introduction; 2. The bounded reaction-diffusion Cauchy problem; 3. Maximum principles; 4. Diffusion theory; 5. Convolution functions, function spaces, integral equations and equivalence lemmas; 6. The bounded reaction-diffusion Cauchy problem with f e L; 7. The bounded reaction-diffusion Cauchy problem with f e Lu; 8. The bounded reaction-diffusion Cauchy problem with f e La; 9. Application to specific problems; 10. Concluding remarks.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.