Fr. 206.00

Electrochemistry for the Environment

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.

List of contents

Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment.- Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants.- Techniques of Electrode Fabrication.- Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants.- Green Electroorganic Synthesis Using BDD Electrodes.- Domestic and Industrial Water Disinfection Using Boron-Doped Diamond Electrodes.- Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation.- Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD.- The Persulfate Process for the Mediated Oxidation of Organic Pollutants.- Electrocoagulation in Water Treatment.- Electroflotation.- Electroreduction of Halogenated Organic Compounds.- Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants.- Preparation, Analysis and Behaviors of Ti-Based SnO2 Electrode and the Function of Rare-Earth Doping in Aqueous Wastes Treatment.- Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment.- Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts.- Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects.- Fabrication of Photoelectrode Materials.- Use of Both Anode and Cathode Reactions in Wastewater Treatment.

About the author










This 350 pages volume contains the contributions from 18 international experts on the key topics concerning environmental chemistry. It is co-edited by Dr. Chen and Prof. Comninellis. Dr. Chen has been working actively in this field for nearly 10 years and is currently an Editor of Separation and Purification Technology. Professor Comninellis is an international authority on environmental electrochemistry with over 30 years of experiences. He is the Chairman of the Electrochemical Process Division of  the International Society of Electrochemistry.


Summary

Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.

Additional text

From the reviews:
“A … book focussing on electrochemical approaches to the protection of the environment is timely and to be welcomed. … The nineteen chapters in this book are all written by authors with broad experience of their topics … . All chapters are extensively referenced. I have no doubt that this book will be valuable to scientists and engineers presently working in the field or seeking to enter it.”­­­ (Derek Pletcher, Journal of Applied Electrochemistry, Vol. 40, 2010)

Report

From the reviews:
"A ... book focussing on electrochemical approaches to the protection of the environment is timely and to be welcomed. ... The nineteen chapters in this book are all written by authors with broad experience of their topics ... . All chapters are extensively referenced. I have no doubt that this book will be valuable to scientists and engineers presently working in the field or seeking to enter it." (Derek Pletcher, Journal of Applied Electrochemistry, Vol. 40, 2010)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.