Fr. 64.00

THE JONES POLYNOMIAL - A Recurrence Relation Approach

English, German · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

The main problem of knot theory is to differentiate knots. To distinguish knots one needs a knot invariant, which is a function that gives a single value on isotopic knots. The first step toward finding knot invariants was made by Reidemeister by introducing the Reidemeister moves. Even before the discovery of the Reidemeister moves, Alexander defined geometrically a polynomial knot invariant which was later defined by Conway in 1970 in terms of a skein relation. In 1985, V. F. R. Jones revolutionized the knot theory by defining the Jones polynomial as a knot invariant. However, in 1987 L. H. Kauffman introduced a stat-sum model construction of the Jones polynomial that was purely combinatorial and remarkably simple. Our contribution to knot theory includes a general recurrence relation for the Jones polynomial that helps in proving many qualitative results and an expansion formula that drastically reduces the computations in calculating Jones polynomials. We hope this work is not only useful for people who work in classical knot theory but also for people who work in virtual knot theory.

About the author










Dr. Nizami received his PhD in mathematics from Abdus Salam School of Mathematical Sciences, Lahore. His area of interest is knot theory. He is working as assistant professor at University of Education, Lahore.

Product details

Authors Abdul Rauf Nizami
Publisher LAP Lambert Academic Publishing
 
Languages English, German
Product format Paperback / Softback
Released 14.03.2011
 
EAN 9783844311655
ISBN 978-3-8443-1165-5
No. of pages 68
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.