Fr. 77.00

Invariant theory of Torus and finite groups - A Geometric Approach

English, German · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Geometric invariant theory (GIT) provides a construction of quotients for projective algebraic varieties equipped with an action of a reductive algebraic group. Since its foundation by Mumford, GIT plays an important role in the construction of moduli (or parameter) spaces. More recently, its methods have been successfully applied to problems of representation theory. Many algebraic as well as geometric properties have been studied over the last few decades. One direction of our work is the study of projective normality of GIT quotient varieties for finite group actions and another direction is to study the semi-stable points for a maximal torus action on the homogeneous space G/P. Chapter 1 gives a brief account of the theory of algebraic groups. Chapter 2 is a survey of computational invariant theory of finite groups as well as reductive algebraic groups. In this chapter we present many classical as well as modern results in invariant theory. Chapter 3 is about torus action on G/P and In Chapter 4 we study the projective normality of GIT quotient varieties for the action of finite groups. At the end of this chapter we describe some of the questions that remain to be answered.

About the author










Dr. Santosha Kumar Pattanayak is currently a post-doctoral fellow at Weizmann Institute of Science, Israel after completing his PhD in 2011 from Chennai Mathematical Institute, India. His main areas of interest are Invariant theory, Representation theory of Lie algebras and Algebraic groups.

Product details

Authors Santosha Kumar Pattanayak
Publisher LAP Lambert Academic Publishing
 
Languages English, German
Product format Paperback / Softback
Released 11.10.2011
 
EAN 9783846507452
ISBN 978-3-8465-0745-2
No. of pages 140
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.