Fr. 134.00

Infinite Dimensional Lie Algebras - An Introduction

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










1. Basic definitions.- 2. The invariant bilinear form and the generalized Casimir operator.- 3. Integrable representations and the Weyl group of a Kac-Moody algebra.- 4. Some properties of generalized Cartan matrices.- 5. Real and imaginary roots.- 6. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group.- 7. Affine Lie algebras: the realization (case k = 1).- 8. Affine Lie algebras: the realization (case k = 2 or 3). Application to the classification of finite order automorphisms.- 9. Highest weight modules over the Lie algebra g(A).- 10. Integrable highest weight modules: the character formula.- 11. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem.- 12. Integrable highest weight modules over affine Lie algebras. Application to ?-function identities.- 13. Affine Lie algebras, theta functions and modular forms.- 14. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations.- Index of notations and definitions.- References.

List of contents

1. Basic definitions.- 2. The invariant bilinear form and the generalized Casimir operator.- 3. Integrable representations and the Weyl group of a Kac-Moody algebra.- 4. Some properties of generalized Cartan matrices.- 5. Real and imaginary roots.- 6. Affine Lie algebras: the normalized invariant bilinear form, the root system and the Weyl group.- 7. Affine Lie algebras: the realization (case k = 1).- 8. Affine Lie algebras: the realization (case k = 2 or 3). Application to the classification of finite order automorphisms.- 9. Highest weight modules over the Lie algebra g(A).- 10. Integrable highest weight modules: the character formula.- 11. Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem.- 12. Integrable highest weight modules over affine Lie algebras. Application to ?-function identities.- 13. Affine Lie algebras, theta functions and modular forms.- 14. The principal realization of the basic representation. Application to the KdV-type hierarchies of non-linear partial differential equations.- Index of notations and definitions.- References.

Product details

Authors Victor G Kac, Victor G. Kac
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2012
 
EAN 9781475713848
ISBN 978-1-4757-1384-8
No. of pages 252
Dimensions 155 mm x 232 mm x 14 mm
Weight 396 g
Illustrations XVI, 252 p.
Series Progress in Mathematics
Progress in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.