Fr. 65.00

Grundstrukturen der Analysis II

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t" (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t in x und y in (Dt, Dg 0 t (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso morphien sind.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.