Read more
This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation.
List of contents
Introduction.- Expansion into Wave Functions.- Scattering From a Perfect Conductor.- The Variational Approach to the Cavity Problem.- Boundary Integral Equation Methods for Lipschitz Domains.- Appendix.- References.- Index.
About the author
PD Dr. Frank Hettlich ist als Dozenten an der Fakultät für Mathematik der Universität Karlsruhe tätig. Für den Vorlesungszyklus Höhere Mathematik für Studierende des Maschinenbaus und des Chemieingenieurwesens erhielt er 2004 gemeinsam mit anderen Mitgliedern ihres Instituts den Landeslehrpreis des Landes Baden-Württemberg.
Report
"This book is devoted to the study of the Maxwell equations in relationship with the basic techniques for a thorough mathematical analysis of these equations. ... Numerous examples and exercises illustrate the abstract content of this book. The volume under review is useful to graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation." (Teodora-Liliana Radulescu, zbMATH 1342.35004, 2016)