Fr. 135.00

A Variational Inequality Approach to free Boundary Problems with Applications in Mould Filling

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results.

List of contents

1 Introduction.- 2 Evolutionary Variational Inequality Approach.- 2.1 The degenerate free boundary problem.- 2.2 Some application problems.- 2.3 Different fixed domain formulations.- 3 Properties of the Variational Inequality Solution.- 3.1 Problem setting and general notations.- 3.2 Existence and uniqueness result.- 3.3 Monotonicity properties and regularity with respect to time.- 3.4 Regularity with respect to space variables.- 3.5 Some remarks on further regularity results.- 4 Finite Volume Approximations for Elliptic Inequalities.- 4.1 Finite element and volume approximations for the obstacle problem.- 4.2 Comparison of finite volume and finite element approximations.- 4.3 Error estimates for the finite volume solution.- 4.4 Penalization methods for the finite volume obstacle problem.- 4.5 The Signorini problem as a boundary obstacle problem.- 4.6 Results from numerical experiments for elliptic obstacle problems.- 5 Numerical Analysis of the Evolutionary Inequalities.- 5.1 Finite element and volume approximations for the evolutionary problems.- 5.2 Error estimates for the finite element and finite volume solutions.- 5.3 Penalization methods for the evolutionary finite volume inequalities.- 5.4 Numerical experiments for evolutionary variational inequalities.- 6 Injection and Compression Moulding as Application Problems.- 6.1 Classical Hele-Shaw flows and related moving boundary problems.- 6.2 Mathematical modelling of injection and compression moulding.- 6.3 Simulation results.- 7 Concluding Remarks.- List of Figures.- List of Tables.- List of Symbols.

Summary

Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results.

Product details

Authors Jörg Steinbach
Publisher Springer, Basel
 
Languages English
Product format Paperback / Softback
Released 01.01.2012
 
EAN 9783034875998
ISBN 978-3-0-3487599-8
No. of pages 294
Dimensions 170 mm x 16 mm x 244 mm
Weight 535 g
Illustrations X, 294 p.
Series International Series of Numerical Mathematics
International Series of Numerical Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

B, Mathematics and Statistics, Partial Differential Equations, Differential equations, Partial differential equation

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.