Fr. 134.00

Cloud Computing for Data-Intensive Applications

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book presents a range of cloud computing platforms for data-intensive scientific applications. It covers systems that deliver infrastructure as a service, including: HPC as a service; virtual networks as a service; scalable and reliable storage; algorithms that manage vast cloud resources and applications runtime; and programming models that enable pragmatic programming and implementation toolkits for eScience applications. Many scientific applications in clouds are also introduced, such as bioinformatics, biology, weather forecasting and social networks. Most chapters include case studies.Cloud Computing for Data-Intensive Applications targets advanced-level students and researchers studying computer science and electrical engineering. Professionals working in cloud computing, networks, databases and more will also find this book useful as a reference.

List of contents

Scalable Deployment of a LIGO Physics Application on Public Clouds:Workflow Engine and Resource Provisioning Techniques.- The FutureGrid Testbed for Big Data.- Cloud Networking to Support Data Intensive Applications.- IaaS cloud benchmarking: approaches, challenges, and experience.- Adaptive Workload Partitioning and Allocation for Data Intensive Scientific Applications.- Federating Advanced CyberInfrastructures with Autonomic Capabilities.- Executing Storm Surge Ensembles on PAAS Cloud.- Migrating Scientific Workflow Management Systems from the Grid to the Cloud.- Efficient Task-Resource Matchmaking Using Self-Adaptive Combinatorial Auction.- Cross-Phase Optimization in MapReduce.- DRAW: A New Data-gRouping-AWare Data Placement Scheme for Data Intensive Applications with Interest Locality.- Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation.- GPU-Accelerated Cloud Computing Data-Intensive Applications.- Big Data Storage and Processingon Azure Clouds: Experiments at Scale and Lessons Learned.- Storage and Data Lifecycle Management in Cloud Environments with FRIEDA.- DTaaS: Data Transfer as a Service in the Cloud.- Supporting a Social Media Observatory with Customizable Index Structures - Architecture and Performance.

Summary

This book presents a range of cloud computing platforms for data-intensive scientific applications. It covers systems that deliver infrastructure as a service, including: HPC as a service; virtual networks as a service; scalable and reliable storage; algorithms that manage vast cloud resources and applications runtime; and programming models that enable pragmatic programming and implementation toolkits for eScience applications. Many scientific applications in clouds are also introduced, such as bioinformatics, biology, weather forecasting and social networks. Most chapters include case studies.
Cloud Computing for Data-Intensive Applications targets advanced-level students and researchers studying computer science and electrical engineering. Professionals working in cloud computing, networks, databases and more will also find this book useful as a reference.

Product details

Assisted by Xiaoli Li (Editor), Xiaolin Li (Editor), Qiu (Editor), Qiu (Editor), Judy Qiu (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2014
 
EAN 9781493919048
ISBN 978-1-4939-1904-8
No. of pages 427
Dimensions 167 mm x 27 mm x 241 mm
Weight 801 g
Illustrations VIII, 427 p. 180 illus.
Subject Natural sciences, medicine, IT, technology > IT, data processing > IT

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.