Fr. 135.00

Third Generation SUSY and ttbar + Z Production - Searches using the ATLAS detector at the CERN Large Hadron Collider

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.

List of contents

Introduction and Theoretical Background.- The LHC and ATLAS Detector.- Analysis Tools.- Trigger.- Search for t¯t+Z Production.- Third Generation SUSY Searches.- Search for Direct sbottom Pair Production.- Search for Direct Stop Pair Production.- Summary.

Summary

This thesis describes searches for new particles predicted by the super symmetry (SUSY) theory, a theory extending beyond the current Standard Model of particle physics, using the ATLAS detector at the CERN Large Hadron Collider. The thesis focuses on searches for stop and sbottom squarks, the SUSY partners of the top and bottom quarks, which are expected to be lighter than the partners of the first and second generation quarks and therefore good candidates for the first evidence of SUSY. It describes novel techniques for estimating and rejecting the Standard-Model backgrounds to searches for these particles. It also includes an independent analysis seeking to constrain the Standard Model ttZ background process, which also represents the first ATLAS search for this rare process at the LHC. The stop squark analysis described, with substantial leading contributions from the author, is the first search for these particles at the LHC to use the jets plus missing transverse energy plus 0-lepton signature and provides the world's best limits on the stop mass for light neutralino LSPs. All in all, the thesis describes three different world-leading analyses in both Standard Model and SUSY physics and therefore represents a major contribution to the field.

Product details

Authors Josh McFayden, Joshua McFayden
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 22.04.2014
 
EAN 9783319071909
ISBN 978-3-31-907190-9
No. of pages 178
Dimensions 162 mm x 243 mm x 16 mm
Weight 409 g
Illustrations XVIII, 178 p. 97 illus., 53 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

B, String Theory, Theoretical, Mathematical and Computational Physics, Physics and Astronomy, Quantum field theory, Elementary particles (Physics), Elementary Particles, Quantum Field Theory, Statistical physics, Quantum Field Theories, String Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.