Fr. 210.00

Density Ratio Estimation in Machine Learning

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

Informationen zum Autor Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology. Taiji Suzuki is an Assistant Professor in the Department of Mathematical Informatics at the University of Tokyo, Japan. Takafumi Kanamori is an Associate Professor in the Department of Computer Science and Mathematical Informatics at Nagoya University, Japan. Klappentext This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community. Zusammenfassung Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. The book introduces theories! methods and applications of density ratio estimation. This is the first and definitive treatment of the entire framework of density ratio estimation. Inhaltsverzeichnis Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.