Read more
Informationen zum Autor James D. Malley is a Research Mathematical Statistician in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health. Karen G. Malley is president of Malley Research Programming, Inc. in Rockville, Maryland, providing statistical programming services to the pharmaceutical industry and the National Institutes of Health. She also serves on the global council of the Clinical Data Interchange Standards Consortium (CDISC) user network, and the steering committee of the Washington, DC area CDISC user network. Sinisa Pajevic is a Staff Scientist in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health. Klappentext This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures. Zusammenfassung Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language! using many examples and figures! and connects these new methods to familiar techniques. Inhaltsverzeichnis Preface; Acknowledgements; Part I. Introduction: 1. Prologue; 2. The landscape of learning machines; 3. A mangle of machines; 4. Three examples and several machines; Part II. A Machine Toolkit: 5. Logistic regression; 6. A single decision tree; 7. Random forests - trees everywhere; Part III. Analysis Fundamentals: 8. Merely two variables; 9. More than two variables; 10. Resampling methods; 11. Error analysis and model validation; Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote; 13. Summary and conclusions; References; Index....