Read more
Informationen zum Autor James Wilson is widely recognised as a pioneer in the field of numerical relativity and hydrodynamics. Most of the techniques currently in active use in the field today were developed by him at one stage or another. Grant Mathews is Professor of Theoretical Astrophysics and Cosmology at Notre Dame University, Indiana. Klappentext This book presents an overview of the computational framework in which calculations of relativistic hydrodynamics have been developed. It summarizes the jargon and methods used in the field, and provides illustrative applications to real physical systems. The authors explain how to break down the complexities of Einstein's equations and fluid dynamics, stressing the viability of the Euler-Lagrange approach to astrophysical problems. The book contains techniques and algorithms enabling one to build computer simulations of relativistic fluid problems for various astrophysical systems in one, two and three dimensions. It also shows the reader how to test relativistic hydrodynamics codes. Suitable for graduate courses on astrophysical hydrodynamics and relativistic astrophysics, this book also provides a valuable reference for researchers already working in the field. Zusammenfassung An overview of the computational framework in which calculations of relativistic hydrodynamics have been developed! this book summarizes the jargon and methods used in the field! providing illustrative applications to real physical systems. A valuable reference for researchers and graduates studying astrophysical hydrodynamics. Inhaltsverzeichnis Preface; 1. Introduction; 2. Special relativistic hydrodynamics; 3. General relativistic hydrodynamics; 4. Cosmological hydrodynamics; 5. Stellar collapse and supernovae; 6. Axially symmetric relativistic hydrodynamics; 7. Hydrodynamics in three spatial dimensions; Index.