Read more
Klappentext Originally published in 1937, this book aims 'to develop the principles of quantum mechanics on the basis of a few standard observations'. Zusammenfassung Originally published in 1937, this book by renowned physicist Alfred Landé aims 'to develop the principles of quantum mechanics on the basis of a few standard observations'. Landé notes that, in contrast with classical mechanics, quantum mechanics is still a relatively young science with some way to go before it is internally consistent. Inhaltsverzeichnis Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ¿ (x) and ¿ (p); 11. Complementarity; 12. Mathematical relation between ¿ (x) and ¿ (p) for free particles; 13. General relation between ¿ (q) and ¿ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ¿ (t) and ¿ (¿); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ¿ and ¿; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for ¿p (q) and Xq (p); 39. Differential equation for ¿ß (q); 40. The general probability amplitude ¿ß' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects....