Fr. 197.00

Constitutive Relations under Impact Loadings - Experiments, Theoretical and Numerical Aspects

English · Hardback

Shipping usually within 4 to 7 working days

Description

Read more

The book describes behavior of materials (ductile, brittle and composites) under impact loadings and high strain rates. The three aspects: experimental, theoretical and numerical are in the focus of interest. Hopkinson bars are mainly used as experimental devices to describe dynamic behavior of materials. The precise description of experimental techniques and interpretation of wave interaction are carefully discussed. Theoretical background refers to rate dependent thermo viscoplastic formulation. This includes the discussion of well posedness of initial boundary value problems and the solution of the system of governing equations using numerical methods. Explicit time integration is used in computations to solve dynamic problems. In addition, many applications in aeronautic and automotive industries are exposed.

List of contents

Testing with bars from dynamic to quasi-static.- Dynamic testing of materials.- Material behavior under dynamics loading, modeling and experiments.- Analysis of some high-speed impact problems in the aircraft industry.- Computer estimation of plastic strain localization and failure for large strain rates using viscoplasticity.- Inelastic flow and failure of metallic solids accounting for asymmetry of elastic range and micro-shear banding.

Summary

The book describes behavior of materials (ductile, brittle and composites) under impact loadings and high strain rates. The three aspects: experimental, theoretical and numerical are in the focus of interest. Hopkinson bars are mainly used as experimental devices to describe dynamic behavior of materials. The precise description of experimental techniques and interpretation of wave interaction are carefully discussed. Theoretical background refers to rate dependent thermo viscoplastic formulation. This includes the discussion of well posedness of initial boundary value problems and the solution of the system of governing equations using numerical methods. Explicit time integration is used in computations to solve dynamic problems. In addition, many applications in aeronautic and automotive industries are exposed.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.