Fr. 25.50

Lineare und ganzrationale Funktionen für die gymnasiale Mittel- und Oberstufe

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Skript aus dem Jahr 2011 im Fachbereich Mathematik - Algebra, , Sprache: Deutsch, Abstract: [...] Die violette Kurve f(x) beschreibt die Funktion, nach der ein Becken mit Wasser gefüllt wird. Sie beschreibt die zugeführte Menge an Wasser. Da die Kurve keine Steigung hat, bleibt auch die Zufuhr der Wassermenge konstant. Geht man davon aus, dass zu Beginn noch kein Wasser im Becken war, kann man annehmen, dass die rote Kurve den Wasserbestand im Becken beschreibt. Die Steigung der Kurve ist 1. Das heißt, dass pro Einheit eins dazu kommt. Wer genau hinschaut merkt: Die violette Kurve ist die Ableitung der roten Kurve. Klar, die violette Kurve ist die Änderung des Bestandes, der mit der roten Kurve beschrieben wird. Man spricht davon, dass die rote Kurve eine Stammfunktion der violetten Kurve ist. Möchte man nun herausfinden, wie groß der Wasserbestand nach 6 Stunden ist, so muss man einfach den Funktionswerte der Stammfunktion bei x=6 nehmen. Wenn jede Stunde 1 m³ Wasser hinzu kommt, sind es nach 6 Stunden 6m³ - der Funktionswert der Stammfunktion. In der unteren Abbildung ist die steigende Gerade um 2 nach oben verschoben. Das heißt, dass der Wasserbestand zu Beginn schon bei 2m³ lag. Aber auch die Ableitung der roten Funktion ist die violette Funktion - der Zahlenwert +2 fällt beim Differenzieren ja weg. Also hat die violette Kurve jetzt schon zwei Stammfunktionen - und es gibt noch unendlich viele mehr, je nachdem, welchen Wert man als Anfangsbestand festlegt. Das nächste Beispiel beschreibt die Höhenänderung bei einem Heißluftballonflug: Zu Beginn hat der Heißluftballon noch keine Höhenänderung - denn der Wert bei x=0 ist null. Ab dort steigt der Ballon allerdings weiter, bis er am Hochpunkt der Funktion seine Höchste Steigung hat. Doch Achtung: nach dem Hochpunkt sinkt der Ballon nicht! Er hat nur eine geringere Höhenänderung als davor. Bis zur Nullstelle der Funktion steigt der Ballon. Bei der Nullstelle bleibt der Ballon stehen, ab dann sinkt er. Beim Tiefpunkt hat er seine schnellste Sinkgeschwindigkeit. Nun wäre die Abbildung unten links eine möglich Stammfunktion. Wenn die Funktion die Höhenänderung beschreibt, so beschreibt die Stammfunktion die tatsächliche Höhe des Ballons. Dieser hat bei der Nullstelle einen Hochpunkt, weil der Ballon bis dahin steigt. Die links unten abgebildete Funktion ist eine Stammfunktion, bei der der Ballon auf der Höhe 0 abhebt. Eine andere Stammfunktion wäre die unten rechts, wo der Ballon bei einer gewissen Höhe startet [...]

Product details

Authors Anonym, Anonymous, Alexander Martirosian
Publisher Grin Verlag
 
Languages German
Product format Paperback / Softback
Released 14.07.2011
 
EAN 9783640943654
ISBN 978-3-640-94365-4
No. of pages 44
Dimensions 148 mm x 210 mm x 5 mm
Weight 79 g
Illustrations 10 Farbabb.
Series Akademische Schriftenreihe
Akademische Schriftenreihe, Bd. V173986
Akademische Schriftenreihe
Akademische Schriftenreihe Bd. V173986
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.