Fr. 111.60

Duality in Analytic Number Theory

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Klappentext Deals with analytic number theory; many new results. Zusammenfassung In this stimulating book! Peter Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory. He also illustrates a way of thinking mathematically and shows how to formulate theorems as well as construct their proofs. Inhaltsverzeichnis Preface; Notation; Introduction; 0. Duality and Fourier analysis; 1. Background philosophy; 2. Operator norm inequalities; 3. Dual norm inequalities; 4. Exercises: including the large sieve; 5. The Method of the Stable Dual (1): deriving the approximate functional equations; 6. The Method of the Stable Dual (2): solving the approximate functional equations; 7. Exercises: almost linear, almost exponential; 8. Additive functions of class La: a first application of the method; 9. Multiplicative functions of the class La: first approach; 10. Multiplicative functions of the class La: second approach; 11. Multiplicative functions of the class La: third approach; 12. Exercises: why the form? 13. Theorems of Wirsing and Halász; 14. Again Wirsing's theorem; 15. Exercises: the Prime Number Theorem; 16. Finitely distributed additive functions; 17. Multiplicative functions of the class La: mean value zero; 18. Exercises: including logarithmic weights; 19. Encounters with Ramanujan's function t(n); 20. The operator T on L2; 21. The operator T on La and other spaces; 22. Exercises: the operator D and differentiation; the operator T and the convergence of measures; 23. Pause: towards the discrete derivative; 24. Exercises: multiplicative functions on arithmetic progressions; Wiener phenomenon; 25. Fractional power large sieves; operators involving primes; 26. Exercises: probability seen from number theory; 27. Additive functions on arithmetic progressions: small moduli; 28. Additive functions on arithmetic progressions: large moduli; 29. Exercises: maximal inequalities; 30. Shifted operators and orthogonal duals; 31. Differences of additive functions; local inequalities; 32. Linear forms of additive functions in La; 33. Exercises: stability; correlations of multiplicative functions; 34. Further readings; 35. Rückblick (after the manner of Johannes Brahms); References; Author index; Subject index....

Product details

Authors Peter D. Elliott, Peter D. T. A. Elliott, Peter D. T. A. (University of Colorado Elliott, Peter D.t.a. Elliott
Publisher Cambridge University Press ELT
 
Languages English
Product format Paperback / Softback
Released 28.01.2008
 
EAN 9780521058087
ISBN 978-0-521-05808-7
No. of pages 360
Series Cambridge Tracts in Mathematic
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.