Fr. 139.00

Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization - A Handbook for Global Permutation-Based Combinatorial Optimization

English · Mixed media product

Shipping usually within 6 to 7 weeks

Description

Read more

What is combinatorial optimization? Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both ?nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem's feasible solutions - permutations of city labels - c- prise a ?nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de?ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with ?oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi?ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem's goal is to pack objects of differing weight and value so that the knapsack's total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies ?oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.

List of contents

Motivation for Differential Evolution for Permutative-Based Combinatorial Problems.- Differential Evolution for Permutation-Based Combinatorial Problems.- Forward Backward Transformation.- Relative Position Indexing Approach.- Smallest Position Value Approach.- Discrete/Binary Approach.- Discrete Set Handling.

Summary

What is combinatorial optimization? Traditionally, a problem is considered to be c- binatorial if its set of feasible solutions is both ?nite and discrete, i. e. , enumerable. For example, the traveling salesman problem asks in what order a salesman should visit the cities in his territory if he wants to minimize his total mileage (see Sect. 2. 2. 2). The traveling salesman problem’s feasible solutions - permutations of city labels - c- prise a ?nite, discrete set. By contrast, Differential Evolution was originally designed to optimize functions de?ned on real spaces. Unlike combinatorial problems, the set of feasible solutions for real parameter optimization is continuous. Although Differential Evolution operates internally with ?oating-point precision, it has been applied with success to many numerical optimization problems that have t- ditionally been classi?ed as combinatorial because their feasible sets are discrete. For example, the knapsack problem’s goal is to pack objects of differing weight and value so that the knapsack’s total weight is less than a given maximum and the value of the items inside is maximized (see Sect. 2. 2. 1). The set of feasible solutions - vectors whose components are nonnegative integers - is both numerical and discrete. To handle such problems while retaining full precision, Differential Evolution copies ?oating-point - lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest feasible solution, e. g. , by rounding the temporary parameters to the nearest nonnegative integer.

Product details

Assisted by Godfre C Onwubolu (Editor), Godfrey C Onwubolu (Editor), Davendra (Editor), Davendra (Editor), Donald Davendra (Editor), Godfrey C. Onwubolu (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Mixed media product
Released 19.02.2009
 
EAN 9783540921509
ISBN 978-3-540-92150-9
No. of pages 213
Dimensions 155 mm x 16 mm x 235 mm
Weight 461 g
Illustrations XVII, 213 p. With CD-ROM.
Series Studies in Computational Intelligence
Studies in Computational Intelligence
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Künstliche Intelligenz, Transformation, Optimization, Artificial Intelligence, Mutation, Angewandte Mathematik, engineering, intelligence, Programming, Applications of Mathematics, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications, Programming Language

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.