Fr. 65.00

Linear-implizite Runge-Kutta-Methoden und ihre Anwendung

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Die mathematische Modeliierung von physikalisch-technischen sowie auch von biologischen Prozessen führt häufig auf Anfangswertprobleme für Systeme gewöhnlicher Differentialgleichungen, retardierter Diffe rentialgleichungen, Algebra-Differentialgleichungen vom Index 1 sowie auf Anfangs-Randwertprobleme parabolischer Differentialgleichungen. Ihre analytische Lösung ist i.allg. nicht möglich. um quantitative Aussagen über das Verhalten dieser Systeme zu bekommen, sind daher numerische Methoden für die Lösung der vorliegenden Aufgabenklassen von zentraler Bedeutung. Viele der gewöhnlichen und retardierten Differentialgleichungssy steme besitzen Lösungskomponenten mit stark unterschiedlichem Wachs tumsverhalten. Man spricht in diesem Fall von steifen Systemen. Stei fe Differentialgleichungssysteme entstehen auch bei der Behandlung parabolischer Anfangs-Randwertprobleme mittels der longitudinalen Li nienmethode. Algebra-Differentialgleichungssysteme können als Grenz fall singulär gestörter Systeme (spezielle steife Systeme) betrachtet werden. Der numerischen Behandlung steifer Systeme wurde in den letzten 30 Jahren große Aufmerksamkeit gewidmet. Obwohl seit ungefähr 15 Jahren für derartige Probleme effiziente Software zur Verfügung steht, kön nen die Untersuchungen zu dieser Thematik bis heute nicht als abge schlossen angesehen werden. Die Hauptursache hierfür besteht darin, daß das Problem der Steifheit sehr vielschichtig sein kann und die verwendeten Diskretisierungsmethoden nicht in allen Fällen zufrieden stellend arbeiten. Numerische Methoden zur Lösung von Algebra Differentialgleichungen werden seit Beginn der 70er Jahre und ver stärkt seit den BOer Jahren untersucht. Steife Systeme stellen hohe Anforderungen an die Stabilität einer Diskretisierungsmethode. Explizite Runge-Kutta-Methoden sind aufgrund ihres begrenzten Stabilitätsgebietes für die Lösung derartiger Syste me nicht geeignet. Implizite Runge-Kutta-Methoden besitzen ausge zeichnete Stabilitätseigenschaften, erfordern aber in jedem Integra tionsschritt die Lösung nichtlinearer Gleichungssysteme.

Product details

Authors Karl Strehmel, Rüdige Weiner, Rüdiger Weiner
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1992
 
EAN 9783815420270
ISBN 978-3-8154-2027-0
No. of pages 356
Weight 409 g
Illustrations II, 356 S.
Series Teubner-Texte zur Mathematik
Teubner-Texte zur Mathematik
Subjects Natural sciences, medicine, IT, technology > Technology > Miscellaneous

TECHNOLOGY & ENGINEERING / General, Ingenieurwissenschaft - Ingenieurwissenschaftler, C; SCT00004 - Engineering, general; SUCO11649 - Mathematics and Statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.