Fr. 83.00

Geometrische Methoden in der Invariantentheorie

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










Die vorliegende Einftihrung in die Invariantentheorie entstand aus einer Vorlesung, welche ich im Wintersemester 1977/78 in Bonn gehalten habe.Wie schon der Titel ausdruckt stehen dabei die geometrischen Aspekte im Vordergrund. Aufbauend auf einfachen Kenntnissen aus der Algebra wer­ den die Grundlagen der Theorie der algebraischen Transformationsgruppen entwickelt und eine Reihe klassischer und moderner Fragestellungen aus der Invariantentheorie behandelt. Der Leser wird dabei bis an die heutige Forschung herangeftihrt und sollte dann auch in der Lage sein, die ent­ sprechende Originalliteratur zu verstehen. Ich habe versucht, den algebraisch-geometrischen Apparat klein zu halten, um einen meglichst breiten Leserkreis anzusprechen; die benotigten Defi­ nitionen und Resultate sind in einem Anhang zusammengestellt. FUr weiter­ ftihrende Studien wird man allerdings gut daran tun, etwas tiefer in die algebraische Geometrie und die Theorie der halbeinfachen Gruppen einzu­ dringen. Hierfur gibt es inzwischen einige sehr gute Lehrbucher. Bei der Gestaltung und der Themenauswahl schwebte mir vor, eine solide Grundlage zu schaffen und gleichzeitig klassische und moderne Original­ literatur aufzuarbeiten. Viele Einzelheiten stammen aus Gespr1:ichen und Briefwechseln mit verschiedenen Kollegen, speziell mit Walter Borho, wim Hesselink, Jens-Carsten Jantzen, Victor KaC, Domingo Luna, Claudio Pro­ cesi, Vladimir Popov, Nicolas Spaltenstein und Thierry Vust. Alfred Wie­ demann hat die Bonner Vorlesung ausgearbeitet und damit die Grundlage fur das vorliegende Buch geschaffen. Gisela Menzel und Christine Riedt­ mann haben den Text gelesen und viele Unstimmigkeiten behoben. Frau M.

List of contents

Einführung.- I. Einführende Beispiele.- 1. Euklidische Geometrie.- 2. Quadratische Formen.- 3. Konjugationsklassen von Matrizen.- 4. Invarianten mehrerer Vektoren.- 5. Nullformen.- 6. Assoziierte Kegel und Deformationen.- 7. Ternäre kubische Formen.- II. Gruppenoperationen, Invariantenringe und Quotienten.- 1. Algebraische Gruppen.- 2. Gruppenoperationen und lineare Darstellungen.- 3. Quotienten bei linear reduktiven Gruppen.- 4. Beispiele und Anwendungen.- III. Darstellungstheorie und die Methode der U-Invarianten.- 1. Darstellungstheorie linear reduktiver Gruppen.- 2. Das Hilbertkriterium.- 3. U-Invarianten und Normalitäts fragen.- 4. SL-Einbettungen.- Anhang I. Einige Grundlagen aus der algebraischen Geometrie.- 1. Affine Varietäten.- 2. Reguläre Abbildungen.- 3. Dimension.- 4. Normale Varietäten.- 5. Tangential räum und reguläre Punkte.- 6. Hyperflachen und Divisoren.- 7. C-Topologie auf affinen Varietäten.- Anhang II. Lineare Reduktivität der klassischen Gruppen.- 1. Topologische Gruppen, Liegruppen.- 2. Klassische Gruppen.- 3. Haarsches Mass auf kompakten Gruppen.- 4. Volle Reduzibilität der Darstellungen kompakter Gruppen.- 5. Lineare Reduktivität der klassischen Gruppen.- 6. Maximal kompakte Untergruppen.- 7. Cartan-und Iwasawazerlegung.- Symbole und Notationen.- Register.

Product details

Authors Hanspeter Kraft, Hans-Peter Kraft
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1984
 
EAN 9783528085254
ISBN 978-3-528-08525-4
No. of pages 308
Dimensions 140 mm x 15 mm x 243 mm
Illustrations X, 308 S.
Series Aspects of Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.