Fr. 70.00

Positive Polynomials - From Hilbert's 17th Problem to Real Algebra

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, functional analysis, etc.) it shows up as positivity of a polynomial on a certain subset of R^n which itself is often given by polynomial inequalities. The main objective of the book is to give useful characterizations of such polynomials. It takes as starting point Hilbert's 17th Problem from 1900 and explains how E. Artin's solution of that problem eventually led to the development of real algebra towards the end of the 20th century. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed. Thus the monograph can also serve as the basis for a 2-semester course in real algebra.

List of contents

I Real Fields.- II Semialgebraic Sets.- III Quadratic Forms over Real Fields.- IV Real Rings.- V Archimedean Rings.- VI Positive Polynomials on Semialgebraic Sets.- VII Sums of 2mth Powers.- VIII Bounds.- Appendix.

Summary

Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, functional analysis, etc.) it shows up as positivity of a polynomial on a certain subset of R^n which itself is often given by polynomial inequalities. The main objective of the book is to give useful characterizations of such polynomials. It takes as starting point Hilbert's 17th Problem from 1900 and explains how E. Artin's solution of that problem eventually led to the development of real algebra towards the end of the 20th century. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed. Thus the monograph can also serve as the basis for a 2-semester course in real algebra.

Additional text

From the reviews of the first edition:

"This is a nicely written introduction to ‘reality’ and ‘positivity’ in rings, and besides students and researchers it can also be interesting for anyone who would like to learn more on positivity and orderings." (Vilmos Totik, Acta Scientiarum Mathematicarum, Vol. 68, 2002)
"A book on ‘real algebra’ that serves as an introduction to the subject in addition to the main theme of the text. … Well written with exercises for every chapter." (ASLIB Book Guide, Vol. 66 (11), 2001)

Report

From the reviews of the first edition:

"This is a nicely written introduction to 'reality' and 'positivity' in rings, and besides students and researchers it can also be interesting for anyone who would like to learn more on positivity and orderings." (Vilmos Totik, Acta Scientiarum Mathematicarum, Vol. 68, 2002)
"A book on 'real algebra' that serves as an introduction to the subject in addition to the main theme of the text. ... Well written with exercises for every chapter." (ASLIB Book Guide, Vol. 66 (11), 2001)

Product details

Authors Charles Delzell, Charles N. Delzell, Alexande Prestel, Alexander Prestel
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 11.10.2010
 
EAN 9783642074455
ISBN 978-3-642-07445-5
No. of pages 268
Dimensions 161 mm x 238 mm x 17 mm
Weight 438 g
Illustrations VIII, 268 p.
Series Springer Monographs in Mathematics
Springer Monographs in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, B, Algebraische Geometrie, Funktionalanalysis und Abwandlungen, Mathematics and Statistics, Functional Analysis, Algebraic Geometry, Functional analysis & transforms, valued fields

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.