Fr. 189.00

Cross Disciplinary Biometric Systems

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance. Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.

List of contents

Feature Local Binary Patterns.- New Color Features for Pattern Recognition.- Gabor-DCT Features with Application to Face Recognition.- Frequency and Color Fusion for Face Verification.- Mixture of Classifiers for Face Recognition Across Pose.- Wavelet Features for 3D Face Recognition.- Minutiae-based Fingerprint Matching.- Iris segmentation: state of the art and innovative methods.- Various Discriminatory Features for Eye Detection.- LBP and Color Descriptors for Image Classification.

Summary

Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance.  Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.

Product details

Authors Chengju Liu, Chengjun Liu, Vijay Kumar Mago
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 07.05.2014
 
EAN 9783642428401
ISBN 978-3-642-42840-1
No. of pages 228
Dimensions 155 mm x 13 mm x 235 mm
Weight 377 g
Illustrations XVI, 228 p.
Series Intelligent Systems Reference Library
Intelligent Systems Reference Library
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Artificial Intelligence, Mustererkennung, engineering, Computer Vision, pattern recognition, Automated Pattern Recognition, Computational Intelligence, Biometrics, Biometrics (Biology)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.