Share
Fr. 56.90
Michael J Crawley, Michael J. Crawley, Michael J. (Imperial College of Science Crawley, Mj Crawley, Crawley Michael J.
Statistics - An Introduction Using R
English · Paperback / Softback
Shipping usually within 1 to 3 working days
Description
Informationen zum Autor Michael J. Crawley, FRS, Department of Biological Sciences, Imperial College of Science, Technology and Medicine. Author of three bestselling Wiley statistics titles and five life science books. Klappentext "...I know of no better book of its kind..." (Journal of the Royal Statistical Society, Vol 169 (1), January 2006) A revised and updated edition of this bestselling introductory textbook to statistical analysis using the leading free software package R This new edition of a bestselling title offers a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a wide range of disciplines. Step-by-step instructions help the non-statistician to fully understand the methodology. The book covers the full range of statistical techniques likely to be needed to analyse the data from research projects, including elementary material like t--tests and chi--squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within each chapter. Zusammenfassung ". I know of no better book of its kind. Inhaltsverzeichnis Preface xi Chapter 1 Fundamentals 1 Everything Varies 2 Significance 3 Good and Bad Hypotheses 3 Null Hypotheses 3 p Values 3 Interpretation 4 Model Choice 4 Statistical Modelling 5 Maximum Likelihood 6 Experimental Design 7 The Principle of Parsimony (Occam's Razor) 8 Observation, Theory and Experiment 8 Controls 8 Replication: It's the ns that Justify the Means 8 How Many Replicates? 9 Power 9 Randomization 10 Strong Inference 14 Weak Inference 14 How Long to Go On? 14 Pseudoreplication 15 Initial Conditions 16 Orthogonal Designs and Non-Orthogonal Observational Data 16 Aliasing 16 Multiple Comparisons 17 Summary of Statistical Models in R 18 Organizing Your Work 19 Housekeeping within R 20 References 22 Further Reading 22 Chapter 2 Dataframes 23 Selecting Parts of a Dataframe: Subscripts 26 Sorting 27 Summarizing the Content of Dataframes 29 Summarizing by Explanatory Variables 30 First Things First: Get to Know Your Data 31 Relationships 34 Looking for Interactions between Continuous Variables 36 Graphics to Help with Multiple Regression 39 Interactions Involving Categorical Variables 39 Further Reading 41 Chapter 3 Central Tendency 42 Further Reading 49 Chapter 4 Variance 50 Degrees of Freedom 53 Variance 53 Variance: A Worked Example 55 Variance and Sample Size 58 Using Variance 59 A Measure of Unreliability 60 Confidence Intervals 61 Bootstrap 62 Non-constant Variance: Heteroscedasticity 65 Further Reading 65 Chapter 5 Single Samples 66 Data Summary in the One-Sample Case 66 The Normal Distribution 70 Calculations Using z of the Normal Distribution 76 Plots for Testing Normality of Single Samples 79 Inference in the One-Sample Case 81 Bootstrap in Hypothesis Testing with Single Samples 81 Student's t Distribution 82 Higher-Order Moments of a Distribution 83 Skew 84 Kurtosis 86 Reference 87 Further Reading 87 Chapter 6 Two Samples 88 Comparing Two Variances 88 Comparing Two Means 90 Student's t Test 91 Wilcoxon Rank-Sum Test 95 Tests on Paired Samples 97 The Binomial Test 98 Binomial Tests to Compare Two Proportions 100 Chi-Squared Contingency Tables 100 Fi...
List of contents
Preface xi
Chapter 1 Fundamentals 1
Everything Varies 2
Significance 3
Good and Bad Hypotheses 3
Null Hypotheses 3
p Values 3
Interpretation 4
Model Choice 4
Statistical Modelling 5
Maximum Likelihood 6
Experimental Design 7
The Principle of Parsimony (Occam's Razor) 8
Observation, Theory and Experiment 8
Controls 8
Replication: It's the ns that Justify the Means 8
How Many Replicates? 9
Power 9
Randomization 10
Strong Inference 14
Weak Inference 14
How Long to Go On? 14
Pseudoreplication 15
Initial Conditions 16
Orthogonal Designs and Non-Orthogonal Observational Data 16
Aliasing 16
Multiple Comparisons 17
Summary of Statistical Models in R 18
Organizing Your Work 19
Housekeeping within R 20
References 22
Further Reading 22
Chapter 2 Dataframes 23
Selecting Parts of a Dataframe: Subscripts 26
Sorting 27
Summarizing the Content of Dataframes 29
Summarizing by Explanatory Variables 30
First Things First: Get to Know Your Data 31
Relationships 34
Looking for Interactions between Continuous Variables 36
Graphics to Help with Multiple Regression 39
Interactions Involving Categorical Variables 39
Further Reading 41
Chapter 3 Central Tendency 42
Further Reading 49
Chapter 4 Variance 50
Degrees of Freedom 53
Variance 53
Variance: A Worked Example 55
Variance and Sample Size 58
Using Variance 59
A Measure of Unreliability 60
Confidence Intervals 61
Bootstrap 62
Non-constant Variance: Heteroscedasticity 65
Further Reading 65
Chapter 5 Single Samples 66
Data Summary in the One-Sample Case 66
The Normal Distribution 70
Calculations Using z of the Normal Distribution 76
Plots for Testing Normality of Single Samples 79
Inference in the One-Sample Case 81
Bootstrap in Hypothesis Testing with Single Samples 81
Student's t Distribution 82
Higher-Order Moments of a Distribution 83
Skew 84
Kurtosis 86
Reference 87
Further Reading 87
Chapter 6 Two Samples 88
Comparing Two Variances 88
Comparing Two Means 90
Student's t Test 91
Wilcoxon Rank-Sum Test 95
Tests on Paired Samples 97
The Binomial Test 98
Binomial Tests to Compare Two Proportions 100
Chi-Squared Contingency Tables 100
Fisher's Exact Test 105
Correlation and Covariance 108
Correlation and the Variance of Differences between Variables 110
Scale-Dependent Correlations 112
Reference 113
Further Reading 113
Chapter 7 Regression 114
Linear Regression 116
Linear Regression in R 117
Calculations Involved in Linear Regression 122
Partitioning Sums of Squares in Regression: SSY = SSR + SSE 125
Measuring the Degree of Fit, r2 133
Model Checking 134
Transformation 135
Polynomial Regression 140
Non-Linear Regression 142
Generalized Additive Models 146
Influence 148
Further Reading 149
Chapter 8 Analysis of Variance 150
One-Way ANOVA 150
About the author
Michael J. Crawley, FRS, Department of Biological Sciences, Imperial College of Science, Technology and Medicine. Author of three bestselling Wiley statistics titles and five life science books.
Product details
| Authors | Michael J Crawley, Michael J. Crawley, Michael J. (Imperial College of Science Crawley, Mj Crawley, Crawley Michael J. |
| Publisher | Wiley, John and Sons Ltd |
| Languages | English |
| Product format | Paperback / Softback |
| Released | 14.11.2014 |
| EAN | 9781118941096 |
| ISBN | 978-1-118-94109-6 |
| No. of pages | 368 |
| Dimensions | 174 mm x 245 mm x 20 mm |
| Subjects |
Natural sciences, medicine, IT, technology
> Mathematics
> Probability theory, stochastic theory, mathematical statistics
Statistik, Statistics, Angewandte Wahrscheinlichkeitsrechnung u. Statistik, Applied Probability & Statistics, R (Programm), Statistiksoftware / R, Statistical Software / R, Statistics - Text & Reference, Statistik / Lehr- u. Nachschlagewerke, Computational Statistics |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.