Share
O. Neugebauer
Spezielle pathologische Anatomie - Vol..8: A History of Ancient Mathematical Astronomy
English · Paperback / Softback
Description
From the reviews:
"This monumental work will henceforth be the standard interpretation of ancient mathematical astronomy. It is easy to point out its many virtues: comprehensiveness and common sense are two of the most important. Neugebauer has studied profoundly every relevant text in Akkadian, Egyptian, Greek, and Latin, no matter how fragmentary; [...] With the combination of mathematical rigor and a sober sense of the true nature of the evidence, he has penetrated the astronomical and the historical significance of his material. [...] His work has been and will remain the most admired model for those working with mathematical and astronomical texts.
D. Pingree in Bibliotheca Orientalis , 1977
"... a work that is a landmark, not only for the history of science, but for the history of scholarship. HAMA [History of Ancient Mathematical Astronomy] places the history of ancient Astronomy on a entirely new foundation. We shall not soon see its equal.
N.M. Swerdlow in Historia Mathematica , 1979
List of contents
One.-
1. Limitations.-
2. The Major Historical Periods, An Outline.- A. The Hellenistic Period.- B. The Roman Period.- C. Indian Astronomy.- D. The Islamic Period.- E. Epilogue.-
3. General Bibliography.- A. Source Material.- B. Modern Literature.- C. Sectional Bibliographies.- Book I The Almagest and its Direct Predecessors.- A. Spherical Astronomy.-
1 Plane Trigonometry.- 1. Chords.- 2. The Table of Chords.- 3. Examples.- 4. Summary.-
2. Spherical Trigonometry.- 1. The Menelaos Theorem.- 2. Supplementary Remarks.-
3. Equatorial and Ecliptic Coordinates.- 1. Solar Declinations.- 2. Right Ascensions.- 3. Transformation from Ecliptic to Equatorial Coordinates.-
4. Geographical Latitude; Length of Daylight.- 1. Oblique Ascensions.- 2. Symmetries.- 3. Ascensional Differences.- 4. Ortive Amplitude.- 5. Paranatellonta.- 6. Length of Daylight; Seasonal Hours.- 7. Geographical Latitude; Shadow Table.-
5. Ecliptic and Horizon Coordinates.- 1. Introductory Remarks.- 2. Angles between Ecliptic and Horizon.- 3. Ecliptic and Meridian.- 4. Ecliptic and Circles of Altitude.- 5. The Tables (Alm. II, 13).- B. Lunar Theory.-
1. Solar Theory.- 1. The Length of the Year.- 2. Mean Motion.- 3. Anomaly.- A. Eccenter and Epicycles.- B. Determination of Eccentricity and Apogee.- C. The Table for the Solar Anomaly and its Use.-
2. Equation of Time.- 1. The Formulation in the Almagest (III, 9).- 2. Examples.- 3. Proof of Ptolemy s Rule.- 4. The Equation of Time as Function of the Solar Longitude.-
3. Theory of the Moon. First Inequality; Latitude.- 1. Introduction.- 2. Mean Motions.- 3. Period of the Lunar Anomaly.- 4. Radius and Apogee of the Epicycle.- A. Summary of the Method.- B. Numerical Data and Results.- C. Check of the Mean Anomaly; Epoch Values.- 5. The Tables for the First Inequality.- 6. Latitude.- A. Mean Motion of the Argument of Latitude.- B. Epoch Value for the Argument of Latitude.- C. The Lunar Latitude; Example.-
4. Theory of the Moon. Second Inequality.- 1. Empirical Data and Ptolemy s Model.- 2. Determination of the Parameters.- A. Maximum Equation; Eccentricity.- B. Inclination .- C. Critical Remarks.- 3. Computation of the Second Inequality; Tables.- 4. Syzygies.-
5. Parallax.- 1. Introduction.- 2. The Distance of the Moon.- 3. Apparent Diameter of the Moon and of the Sun.- A. Ptolemy s Procedure.- B. Criticism.- 4. Size and Distance of the Sun.- A. Hipparchus Procedure.- B. Historical Consequences.- 5. The Table for Solar and Lunar Parallax (Alm. V, 18).- 6. The Components of the Parallax.-
6. Theory of Eclipses.- 1. Determination of the Mean Syzygies.- 2. Determination of the True Syzygies.- 3. Eclipse Limits.- 4. Intervals between Eclipses.- 5. Tables (VI, 8).- 6. Area-Eclipse-Magnitudes.- 7. Angles of Inclination.- C. Planetary Theory.-
1. Introduction.- 1. General.- 2. Distances and Eccentricities.- 3. Ptolemy s Introduction to Almagest IX.- 4. Parameters of Mean Motion.-
2. Venus.- 1. Eccentricity and Equant.- 2. Mean Motion in Anomaly. Epoch.- 3. The Observational Data.-
3. Mercury.- 1. Apogee.- 2. Eccentricity and Equant.- 3. Perigees.- 4. Mean Motion in Anomaly. Epoch.- 5. Minimum Distance and Motion of the Center of the Epicycle.-
4. The Ptolemaic Theory of the Motion of an Outer Planet.- 1. The Basic Ideas.- 2. Refinement of the Model.- 3. Determination of the Eccentricity and Apogee.- A. Eccentricity from Oppositions.- B. Approximative Solution.- C. Separation of Equant and Deferent.- D. Results.- 4. The Size of the Epicycle.- 5. Mean Motion in Anomaly.- 6. Epoch Values.-
5. Planetary Tables.- 1. The General Method.- 2. Numerical Data.- 3. Examples.- A. Ephemeris for Mars.- B. Ephemeris for Venus.-
6. Theory of Retrogradation.- 1. Stationary Points.- A. Mean Distance.- B. Maximum Distance.- C. Minimum Distance.- D. Numerical Data.- 2. Tables for Retrogradations.- A. Epicycle at Extremal Distances.- B. Epicycle at Arbitrary Distances; Tables.- C. Examples.-
7. Planetary Latitud
Product details
Authors | O. Neugebauer |
Publisher | Springer, Berlin |
Languages | English |
Product format | Paperback / Softback |
Released | 22.09.2013 |
EAN | 9783642619120 |
ISBN | 978-3-642-61912-0 |
No. of pages | 555 |
Dimensions | 172 mm x 245 mm x 32 mm |
Illustrations | 1 SW-Abb., |
Sets |
Spezielle pathologische Anatomie Spezielle pathologische Anatomie |
Series |
Studies in the History of Mathematics and Physical Sciences Studies in the History of Mathematics and Physical Sciences |
Subject |
Natural sciences, medicine, IT, technology
> Physics, astronomy
> Astronomy
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.