Fr. 79.40

Selected Unsolved Problems in Coding Theory

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This original monograph investigates several unsolved problems that currently exist in coding theory. A highly relevant branch of mathematical computer science, the theory of error-correcting codes is concerned with reliably transmitting data over a 'noisy' channel. Despite its fairly long history and consistent prominence, the field still contains interesting problems that have resisted solution by some of the most prominent mathematicians of recent decades.
Employing SAGE-a free open-source mathematics software system-to illustrate ideas, this book is intended for graduate students and researchers in algebraic coding theory, especially those who are interested in finding some current unsolved problems. Familiarity with concepts in algebra, number theory, and modular forms is assumed. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study.

List of contents

Preface.- Background.- Codes and Lattices.- Kittens and Blackjack.- RH and Coding Theory.- Hyperelliptic Curves and QR Codes.- Codes from Modular Curves.- Appendix.- Bibliography.- Index.

Summary

This original monograph investigates several unsolved problems that currently exist in coding theory. A highly relevant branch of mathematical computer science, the theory of error-correcting codes is concerned with reliably transmitting data over a ‘noisy’ channel. Despite its fairly long history and consistent prominence, the field still contains interesting problems that have resisted solution by some of the most prominent mathematicians of recent decades.
Employing SAGE—a free open-source mathematics software system—to illustrate ideas, this book is intended for graduate students and researchers in algebraic coding theory, especially those who are interested in finding some current unsolved problems. Familiarity with concepts in algebra, number theory, and modular forms is assumed. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study.

Additional text

From the reviews:
“This book presents a good number of unsolved problems for those who are interested in the mathematics of the theory of error-correcting codes. It will also be of interest to coding-theorists interested in knowing how to use SAGE to do certain computations with error-correcting codes. … Overall, the book is a treat for coding-theorists in both theoretical and practical aspects.” (Bal Kishan Dass, Mathematical Reviews, Issue 2012 i)
“This is a book for mathematicians interested in learning, in a pleasant and instructive way, some main topics of coding theory. It is also a book for coding theorists interested in learning the program SAGE to perform computations with error-correcting codes. … the book is interesting and enjoyable to read, and offers a good opportunity to learn about some of the most fascinating aspects of the mathematical theory of codes. It is also a good source for learning SAGE in a useful and entertaining way.” (Carlos Munuera, Zentralblatt MATH, Vol. 1239, 2012)

Report

From the reviews:
"This book presents a good number of unsolved problems for those who are interested in the mathematics of the theory of error-correcting codes. It will also be of interest to coding-theorists interested in knowing how to use SAGE to do certain computations with error-correcting codes. ... Overall, the book is a treat for coding-theorists in both theoretical and practical aspects." (Bal Kishan Dass, Mathematical Reviews, Issue 2012 i)
"This is a book for mathematicians interested in learning, in a pleasant and instructive way, some main topics of coding theory. It is also a book for coding theorists interested in learning the program SAGE to perform computations with error-correcting codes. ... the book is interesting and enjoyable to read, and offers a good opportunity to learn about some of the most fascinating aspects of the mathematical theory of codes. It is also a good source for learning SAGE in a useful and entertaining way." (Carlos Munuera, Zentralblatt MATH, Vol. 1239, 2012)

Product details

Authors Davi Joyner, David Joyner, Jon-Lark Kim
Publisher Springer, Basel
 
Languages English
Product format Hardback
Released 01.09.2011
 
EAN 9780817682552
ISBN 978-0-8176-8255-2
No. of pages 248
Dimensions 155 mm x 242 mm x 17 mm
Weight 454 g
Illustrations XII, 248 p. 17 illus.
Series Applied and Numerical Harmonic Analysis
Applied and Numerical Harmonic Analysis
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.