Fr. 70.00

PT-Symmetric Schrödinger Operators with Unbounded Potentials

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all - provided one is familiar with the theory of self-adjoint operators in Krein spaces.
Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum.

List of contents

Aus dem Inhalt:
Linear Operators in Krein Spaces - PT-Symmetry - Spectral Theory - Relatively Bounded/Compact Perturbations - Relatively Form-Bounded/Form-Compact Perturbations - Schrödinger Operators

About the author

Dr. Jan Nesemann holds a master’s degree in mathematics as well as in business administration. He received his PhD in mathematics from the University of Bern under the guidance of Prof. Dr. Christiane Tretter. Currently he works as an actuarial and financial services consultant in Zurich.

Summary

Following the pioneering work of Carl M. Bender et al. (1998), there has been an increasing interest in theoretical physics in so-called PT-symmetric Schrödinger operators. In the physical literature, the existence of Schrödinger operators with PT-symmetric complex potentials having real spectrum was considered a surprise and many examples of such potentials were studied in the sequel. From a mathematical point of view, however, this is no surprise at all – provided one is familiar with the theory of self-adjoint operators in Krein spaces.

Jan Nesemann studies relatively bounded perturbations of self-adjoint operators in Krein spaces with real spectrum. The main results provide conditions which guarantee the spectrum of the perturbed operator to remain real. Similar results are established for relatively form-bounded perturbations and for pseudo-Friedrichs extensions. The author pays particular attention to the case when the unperturbed self-adjoint operator has infinitely many spectral gaps, either between eigenvalues or, more generally, between separated parts of the spectrum.

Product details

Authors Jan Nesemann
Publisher Vieweg+Teubner
 
Languages English
Product format Paperback / Softback
Released 01.07.2011
 
EAN 9783834817624
ISBN 978-3-8348-1762-4
No. of pages 83
Weight 150 g
Illustrations VIII, 83 p.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Mathematik, B, Mathematics, Mathematics and Statistics, Mathematics, general, Operator Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.