Share
Fr. 69.00
N. G. Basov, G Basov, N G Basov
Optical Properties of Semiconductors
English · Paperback / Softback
Shipping usually within 1 to 2 weeks (title will be printed to order)
Description
Radiation Emitted from Semiconductor Lasers in Strong Magnetic Fields and under High Hydrostatic Pressures.- I Influence of Magnetic Fields and High Pressures on Energy Spectra of Semiconductors.- ¿1. Influence of Magnetic Fields on Energy Structure of III¿V and IV¿VI Semiconductor Compounds.- ¿2. Influence of Pressure on Energy Structures of III¿V and IV¿VI Compounds.- ¿3. Characteristics of Semiconductor Laser Operation Affected by Variation of Temperature, Pressure, and Magnetic Field.- II Experimental Method.- ¿1. Apparatus for Excitation of Injection Lasers and Recording of Emission Spectra.- ¿2. Q-Switched CO2 Laser.- ¿3. Technique Used in Low-Tempe rature Magnetooptic Investigations at Infrared Wavelengths.- ¿4. Apparatus Used in Optical Measurements at Infrared Wavelengths under High Hydrostatic Pressures at 77¿K.- ¿5. Zinc- and Copper-Doped Germanium Infrared-Radiation Detectors.- ¿6. Scanning of Infrared Radiation Emitted from InSb Crystals.- ¿7. Other Measurements.- III Influence of Magnetic Fields on Emission Spectra of p-n Junctions in InAs, InSb, and PbSe.- ¿1. Spontaneous and Coherent Radiation Emitted from InAs Injection Lasers.- ¿2. Radiation Emitted from InSb Injection Lasers in Strong Magnetic Fields. Position of Light-Emission Region.- ¿3. Spontaneous and Coherent Radiation Emitted from p-n Junctions in PbSe,.- IV Magnetically Tuned Stimulated Raman Emission from Indium Antimonide.- ¿1. Raman Scattering of Light by Plasmons and Landau Levels in Semiconductors.- ¿2. Stimulated Raman Scattering of Light Accompanied by Spin Flip in Indium Antimonide.- ¿3. Discussion of Results.- V Influence of Pressure on Radiation Emitted from Lead Selenide and Gallium Arsenide Semiconductor Lasers.- ¿1. Emission Spectra of PbSe Lasers.- ¿2. Emission Spectra of GaAs Lasers.- ¿3. Discussion of Results.- Conclusions.- Literature Cited.- Investigation of the Collective Properties of Excitons in Germanium by Long-Wavelength Infrared Spectroscopy Methods.- I Energy Spectra and Collective Properties of Excitons in Semiconductors.- 1. Energy Spectrum of Excitons.- ¿1. Theoretical Calculations.- ¿2. Experimental Results.- 2. Collective Properties of Exciton Systems.- ¿1. Theoretical Representations.- ¿2. Discussion of Experimental Results.- II Methods used in Far-Infrared Investigations of Excitons in Semiconductors.- ¿1. Spectroscopic Measurements.- ¿2. Apparatus Used in Low-Tempe rature Optical Measurements under Interband Excitation Conditions.- ¿3. Sources of Exciting Radiation.- ¿4. Thermal Conditions.- III Far-Infrared Resonance Absorption in Condensed Exciton Phase in Germanium.- ¿1. Absorption Spectra of Intrinsic Germanium.- ¿2. Discussion of Parameters of Electron ¿Hole Drops (n0 and ?).- ¿3. Temperature Dependence of Resonance Absorption.- ¿4. Dependence of Resonance Absorption on Excitation Rate.- ¿5. Resonance Absorption in Doped Germanium.- IV Resonance Luminescence of Condensed Exciton Phase in Germanium.- ¿1. Experimental Investigation of Resonance Luminescence.- ¿2. Discussion of Experimental Results. Effective Luminescence Temperature of Drops.- ¿3. Influence of Inhomogeneous Deformation on Resonance Absorption and Luminescence. Mobility of Electron-Hole Drops.- V Photoionization and Excitation of Free Excitons in Germanium by Submillimeter Radiation.- ¿1. Photoionization and Excitation Spectra.- ¿2. Discussion of Experimental Results. Energy Levels of Excitons.- Literature Cited.- Collective Interactions of Excitons and Nonequilibrium Carriers in Gallium Arsenide and Silicon.- I Collective Interactions of Excitons in Semiconductors.- II Measurement Method.- ¿1. Optical System and Method of Recording Luminescence during Continuous Optical Excitation.- ¿2. Optical System and Method of Recording Luminescence Due to High-Power Light Pulses.- ¿3. Temperature Measurement Method.- ¿4. Determination of Temperature Rise in a Semiconductor during Continuous Optical Excitation.- ¿5. Determination of Temperature Rise in a Semiconductor during Illumination with High-Power Light Pulses.- III Photoluminescence of Gallium Arsenide.- ¿1. Excitons in GaAs and Their Role in Radiative Recombination.- ¿2. Investigation of Luminescence Spectra of GaAs at Different Optical Excitation Rates and Helium Temperatures.- ¿3. Photoluminescence of GaAs at Temperatures 2¿100¿K. Investigation of Temperature Dependence of Recombination Radiation Intensity.- ¿4. Photoluminescence Spectra of GaAs at T = 77¿K.- ¿5. Discussion of Results.- ¿6. Supplement. Possibility of Existence of Condensate in Pure Epitaxial GaAs Films.- IV Change in Absorption Coefficient of Undoped GaAs Due to Strong Optical Excitation.- V Investigation of Photoluminescence Spectra of Silicon at Different Optical Excitation Rates.- ¿1. Review of Literature.- ¿2. Experimental Investigation of the Photoluminescence of Si at Different Optical Excitation Rates.- ¿3. Photoluminescence Spectra of Si at Different Temperatures. Investigation of the Temperature Dependence of the Luminescence Intensity.- ¿4. Determination of the Binding Energy of Free Excitons from the Fall of the Luminescence Intensity with Rising Temperature.- ¿5. Discussion of Experimental Results.- VI Photoelectric Properties of Silicon at High Optical Excitation Rates.- ¿1. Review of Literature.- ¿2. Measurement Method.- ¿3. Photoluminescence Spectra of Si in the Presence of Static Electric Fields. Impact Ionization of Free Excitons.- ¿4. Kinetics of Recombination Processes in Si.- ¿5. Investigation of Excitons at High Concentrations in Weak Electric Fields.- Literature Cited.
List of contents
Radiation Emitted from Semiconductor Lasers in Strong Magnetic Fields and under High Hydrostatic Pressures.- I Influence of Magnetic Fields and High Pressures on Energy Spectra of Semiconductors.-
1. Influence of Magnetic Fields on Energy Structure of III-V and IV-VI Semiconductor Compounds.-
2. Influence of Pressure on Energy Structures of III-V and IV-VI Compounds.-
3. Characteristics of Semiconductor Laser Operation Affected by Variation of Temperature, Pressure, and Magnetic Field.- II Experimental Method.-
1. Apparatus for Excitation of Injection Lasers and Recording of Emission Spectra.-
2. Q-Switched CO2 Laser.-
3. Technique Used in Low-Tempe rature Magnetooptic Investigations at Infrared Wavelengths.-
4. Apparatus Used in Optical Measurements at Infrared Wavelengths under High Hydrostatic Pressures at 77°K.-
5. Zinc- and Copper-Doped Germanium Infrared-Radiation Detectors.-
6. Scanning of Infrared Radiation Emitted from InSb Crystals.-
7. Other Measurements.- III Influence of Magnetic Fields on Emission Spectra of p-n Junctions in InAs, InSb, and PbSe.-
1. Spontaneous and Coherent Radiation Emitted from InAs Injection Lasers.-
2. Radiation Emitted from InSb Injection Lasers in Strong Magnetic Fields. Position of Light-Emission Region.-
3. Spontaneous and Coherent Radiation Emitted from p-n Junctions in PbSe,.- IV Magnetically Tuned Stimulated Raman Emission from Indium Antimonide.-
1. Raman Scattering of Light by Plasmons and Landau Levels in Semiconductors.-
2. Stimulated Raman Scattering of Light Accompanied by Spin Flip in Indium Antimonide.-
3. Discussion of Results.- V Influence of Pressure on Radiation Emitted from Lead Selenide and Gallium Arsenide Semiconductor Lasers.-
1. Emission Spectra of PbSe Lasers.-
2.Emission Spectra of GaAs Lasers.-
3. Discussion of Results.- Conclusions.- Literature Cited.- Investigation of the Collective Properties of Excitons in Germanium by Long-Wavelength Infrared Spectroscopy Methods.- I Energy Spectra and Collective Properties of Excitons in Semiconductors.- 1. Energy Spectrum of Excitons.-
1. Theoretical Calculations.-
2. Experimental Results.- 2. Collective Properties of Exciton Systems.-
1. Theoretical Representations.-
2. Discussion of Experimental Results.- II Methods used in Far-Infrared Investigations of Excitons in Semiconductors.-
1. Spectroscopic Measurements.-
2. Apparatus Used in Low-Tempe rature Optical Measurements under Interband Excitation Conditions.-
3. Sources of Exciting Radiation.-
4. Thermal Conditions.- III Far-Infrared Resonance Absorption in Condensed Exciton Phase in Germanium.-
1. Absorption Spectra of Intrinsic Germanium.-
2. Discussion of Parameters of Electron -Hole Drops (n0 and ?).-
3. Temperature Dependence of Resonance Absorption.-
4. Dependence of Resonance Absorption on Excitation Rate.-
5. Resonance Absorption in Doped Germanium.- IV Resonance Luminescence of Condensed Exciton Phase in Germanium.-
1. Experimental Investigation of Resonance Luminescence.-
2. Discussion of Experimental Results. Effective Luminescence Temperature of Drops.-
3. Influence of Inhomogeneous Deformation on Resonance Absorption and Luminescence. Mobility of Electron-Hole Drops.- V Photoionization and Excitation of Free Excitons in Germanium by Submillimeter Radiation.-
1. Photoionization and Excitation Spectra.-
2. Discussion of Experimental Results. Energy Levels of Excitons.- Literature Cited.- Collective Interactions of Excitons and Nonequilibrium Carriers in Gallium Arsenide andSilicon.- I Collective Interactions of Excitons in Semiconductors.- II Measurement Method.-
1. Optical System and Method of Recording Luminescence during Continuous Optical Excitation.-
2. Optical System and Method of Recording Luminescence Due to High-Power Light Pulses.-
3. Temperature Measurement Method.-
4. Determination of Temperature Rise in a Semiconductor during Continuous Optical Excitation.-
5. Determination of Temperature Rise in a Semiconductor during Illumination with High-Power Light Pulses.- III Photoluminescence of Gallium Arsenide.-
1. Excitons in GaAs and Their Role in Radiative Recombination.-
2. Investigation of Luminescence Spectra of GaAs at Different Optical Excitation Rates and Helium Temperatures.-
3. Photoluminescence of GaAs at Temperatures 2-100°K. Investigation of Temperature Dependence of Recombination Radiation Intensity.-
4. Photoluminescence Spectra of GaAs at T = 77°K.-
5. Discussion of Results.-
6. Supplement. Possibility of Existence of Condensate in Pure Epitaxial GaAs Films.- IV Change in Absorption Coefficient of Undoped GaAs Due to Strong Optical Excitation.- V Investigation of Photoluminescence Spectra of Silicon at Different Optical Excitation Rates.-
1. Review of Literature.-
2. Experimental Investigation of the Photoluminescence of Si at Different Optical Excitation Rates.-
3. Photoluminescence Spectra of Si at Different Temperatures. Investigation of the Temperature Dependence of the Luminescence Intensity.-
4. Determination of the Binding Energy of Free Excitons from the Fall of the Luminescence Intensity with Rising Temperature.-
5. Discussion of Experimental Results.- VI Photoelectric Properties of Silicon at High Optical Excitation Rates.-
1. Review of Literature.-
2. MeasurementMethod.-
3. Photoluminescence Spectra of Si in the Presence of Static Electric Fields. Impact Ionization of Free Excitons.-
4. Kinetics of Recombination Processes in Si.-
5. Investigation of Excitons at High Concentrations in Weak Electric Fields.- Literature Cited.
Product details
Assisted by | N. G. Basov (Editor), G Basov (Editor), N G Basov (Editor) |
Publisher | Springer, Berlin |
Languages | English |
Product format | Paperback / Softback |
Released | 22.04.2014 |
EAN | 9781461575504 |
ISBN | 978-1-4615-7550-4 |
No. of pages | 181 |
Weight | 485 g |
Illustrations | VIII, 181 p. 11 illus. |
Series |
The Lebedev Physics Institute Series The Lebedev Physics Institute Series |
Subject |
Natural sciences, medicine, IT, technology
> Physics, astronomy
> Atomic physics, nuclear physics
|
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.