Fr. 83.00

Dalla geometria di Euclide alla geometria dell'Universo - Geometria su sfera, cilindro, cono, pseudosfera

Italian · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.

List of contents

1 Perché la geometria sulle superfici.- 2 La geometria sulla sfera.- 3 Euclide, Hilbert e la geometria sulla sfera.- 4 Geometria sul cilindro.- 5 Geometria sul cono.- 6 La curvatura.- 7. La pseudosfera e la geometria sulla pseudosfera.- 8 La sfera Terra: fare il punto.- 9 La sfera Terra: le carte geografiche.- 10 Le mappe conformi della pseudosfera e i modelli di geometria iperbolica.- 11 Il nostro spazio è euclideo?.- A Confronto tra i sistemi assiomatici di Euclide e di Hilbert.- B GPS: sistema di posizionamento globale.- Bibliografia.

Summary

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.

Additional text

From the reviews:
“The authors describe elliptic (sphere), flat (cylinder, cone) and hyperbolic (pseudosphere) geometries, construct and study several projections and conformal mappings. … The book can be recommended to everybody who teaches mathematics in high school, to students in mathematics, physics or engineering, to researchers in didactics of mathematics, especially of geometry, and to all those who want to understand that the Euclidean geometry is not enough to describe the universe.” (Marian Ioan Munteanu, zbMATH, Vol. 1272, 2013)

Report

From the reviews:
"The authors describe elliptic (sphere), flat (cylinder, cone) and hyperbolic (pseudosphere) geometries, construct and study several projections and conformal mappings. ... The book can be recommended to everybody who teaches mathematics in high school, to students in mathematics, physics or engineering, to researchers in didactics of mathematics, especially of geometry, and to all those who want to understand that the Euclidean geometry is not enough to describe the universe." (Marian Ioan Munteanu, zbMATH, Vol. 1272, 2013)

Product details

Authors Ferdinand Arzarello, Ferdinando Arzarello, ARZARELLO FERDINAND, Cristiano Dan, Cristiano Dane, Cristian Dané, Cristiano Dané, Laur Lovera, Laura Lovera, Miranda Mosca, Nicoletta Nolli, Antonella Ronco
Publisher Springer, Berlin
 
Languages Italian
Product format Paperback / Softback
Released 26.01.2012
 
EAN 9788847025738
ISBN 978-88-470-2573-8
No. of pages 198
Dimensions 171 mm x 12 mm x 235 mm
Weight 348 g
Illustrations XI, 198 pagg.
Series Convergenze
Convergenze
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.