Fr. 49.90

Harmonic Functions and Potentials on Finite or Infinite Networks

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.

List of contents

1 Laplace Operators on Networks and Trees.- 2 Potential Theory on Finite Networks.- 3 Harmonic Function Theory on Infinite Networks.- 4 Schrödinger Operators and Subordinate Structures on Infinite Networks.- 5 Polyharmonic Functions on Trees.

Summary

Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.

Additional text

From the reviews:
“In this book a potential-theoretic style of the theory is built into the framework of finite or infinite networks. The motivation of the book is to build a function theory on networks reflecting ideas of potential theory on locally compact spaces. … The book is written in a reader-friendly way and contains various potential-theoretic results … .” (Sirkka-Liisa Eriksson, Zentralblatt MATH, Vol. 1239, 2012)
“The book under review is a treatise of the potential theory on a network, that is, a graph with edge weights that need not be symmetric. … Besides being a very useful resource on the current important developments of the subject, this book has the potential even to change the mindset of those who are vocal critics of axiomatic potential theory, which is viewed by some as an abstruse and unappealing field.” (Flavia Colonna, Mathematical Reviews, Issue 2012 h)

Report

From the reviews:
"In this book a potential-theoretic style of the theory is built into the framework of finite or infinite networks. The motivation of the book is to build a function theory on networks reflecting ideas of potential theory on locally compact spaces. ... The book is written in a reader-friendly way and contains various potential-theoretic results ... ." (Sirkka-Liisa Eriksson, Zentralblatt MATH, Vol. 1239, 2012)
"The book under review is a treatise of the potential theory on a network, that is, a graph with edge weights that need not be symmetric. ... Besides being a very useful resource on the current important developments of the subject, this book has the potential even to change the mindset of those who are vocal critics of axiomatic potential theory, which is viewed by some as an abstruse and unappealing field." (Flavia Colonna, Mathematical Reviews, Issue 2012 h)

Product details

Authors Victor Anandam
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 31.07.2011
 
EAN 9783642213984
ISBN 978-3-642-21398-4
No. of pages 141
Dimensions 156 mm x 239 mm x 10 mm
Weight 244 g
Illustrations X, 141 p.
Series Lecture Notes of the Unione Matematica Italiana
Lecture Notes of the Unione Matematica Italiana
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.