Fr. 45.50

Geometria Differenziale

Italian · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre può essere usato come libro di testo per diversi corsi introduttivi alla geometria differenziale, concentrandosi su alcuni dei vari aspetti della teoria presentati nell'opera.
Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius e un'introduzione ai fibrati principali; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan-Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da numerosi esempi svolti ed esercizi proposti.

About the author

L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre, grazie alla varietà degli  aspetti della teoria in essa presentati, l'opera si presta ad essere utilizzata come libro di testo per corsi introduttivi alla geometria differenziale. Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan- Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da diversi esempi svolti e numerosi esercizi proposti.

Summary

L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre può essere usato come libro di testo per diversi corsi introduttivi alla geometria differenziale, concentrandosi su alcuni dei vari aspetti della teoria presentati nell'opera.
Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius e un'introduzione ai fibrati principali; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan-Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da numerosi esempi svolti ed esercizi proposti.

Additional text

From the reviews:
“The book under review is a generous introduction to differential geometry, including basic notions on Lie groups, fiber bundles, cohomology, and an extensive presentation on Riemannian geometry. … This book is a nice introduction to the geometry of differential manifolds: it illustrates the main properties and provides the important instruments. It can be helpful to mathematicians, physicists, engineers, and it can be also used as a textbook for various courses on differential geometry on different levels.” (Cornelia Vizman, Zentralblatt MATH, Vol. 1230, 2012)

Report

From the reviews:

"The book under review is a generous introduction to differential geometry, including basic notions on Lie groups, fiber bundles, cohomology, and an extensive presentation on Riemannian geometry. ... This book is a nice introduction to the geometry of differential manifolds: it illustrates the main properties and provides the important instruments. It can be helpful to mathematicians, physicists, engineers, and it can be also used as a textbook for various courses on differential geometry on different levels." (Cornelia Vizman, Zentralblatt MATH, Vol. 1230, 2012)

Product details

Authors Marco Abate, Francesca Tovena
Publisher Springer, Berlin
 
Languages Italian
Product format Paperback / Softback
Released 31.07.2011
 
EAN 9788847019195
ISBN 978-88-470-1919-5
No. of pages 472
Dimensions 159 mm x 236 mm x 29 mm
Weight 733 g
Illustrations XIII, 472 pagg.
Series UNITEXT /La Matematica per il 3+2
UNITEXT
La Matematica per il 3+2
UNITEXT
La Matematica per il 3+2
UNITEXT /La Matematica per il 3+2
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.