Fr. 292.80

Nonlinear Dispersive Waves - Asymptotic Analysis and Solitons

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Mark J. Ablowitz is Professor of Applied Mathematics at the University of Colorado, Boulder. Klappentext The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science. Zusammenfassung This book describes the underlying approximation techniques and methods for finding solutions to nonlinear wave equations. Many chapters include exercise sets. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics! engineering and physical science. Inhaltsverzeichnis Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.