Fr. 142.00

Image Processing Using Pulse-Coupled Neural Networks

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from images. As these attributes form the foundations of most image processing tasks, the use of PCNNs facilitates traditional tasks such as recognition, foveation, and image fusion. PCNN technology has also paved the way for new image processing techniques such as object isolation, spiral image fusion, image signatures, and content-based image searches. This volume contains examples of several image processing applications, as well as a review of hardware implementations.

List of contents

and Theory.- Theory of Digital Simulation.- Automated Image Object Recognition.- Image Fusion.- Image Texture Processing.- Image Signatures.- Miscellaneous Applications.- Hardware Implementations.

About the author

Thomas Lindblad is a professor at the Royal Institute of Technology (Physics) in Stockholm. Working and teaching nuclear and environmental physics his main interest is with sensors, signal processing and intelligent data analysis of torrent data from experiments on-line accelerators, in space, etc.
Jason Kinser is an associate professor at George Mason University. He has developed a plethora of image processing applications in the medical, military, and industrial fields. He has been responsible for the conversion of PCNN theory into practical applications providing many improvements in both speed and performance.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.