Fr. 82.80

Stationary Oscillations of Elastic Plates

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more

Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations. Stationary Oscillations of Elastic Plates studies the latter in the context of stationary vibrations of thin elastic plates. The techniques presented here reduce the complexity of classical elasticity to a system of two independent variables, modeling problems of flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations.
The book is intended for an audience with a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineers whose work involves elastic plates. Graduate students in these fields can also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations.

List of contents

Preface. The Mathematical Models.- Layer Potentials.- The Nonhomogenous System.- The Question of Uniqueness for the Exterior Problems.- The Eigenfrequency Spectra of the Interior Problems.- The Question of Solvability.- The Direct Boundary Equation Formulation.- Modified Fundamental Solutions.- Problems with Robin Boundary Conditions.- The Transmission Problem.- The Null Field Equations.- Appendices.- References.- Index.

Summary

Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations. Stationary Oscillations of Elastic Platesstudies the latter in the context of stationary vibrations of thin elastic plates. The techniques presented here reduce the complexity of classical  elasticity to a system of two independent variables, modeling problems of flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations.
The book is intended for an audience with a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineers whose work involves elastic plates. Graduate students in these fields can also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations.

Product details

Authors Christian Constanda, Gavin Thomson, Gavin R Thomson, Gavin R. Thomson
Publisher Springer, Basel
 
Languages English
Product format Hardback
Released 31.10.2011
 
EAN 9780817682408
ISBN 978-0-8176-8240-8
No. of pages 230
Illustrations XIII, 230 p. 4 illus.
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.