Fr. 59.50

Lie-Gruppen und Lie-Algebren

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gr uppentheorie.

List of contents

I Lie-Gruppen.-
I.1 Die allgemeine lineare Gruppe.-
I.2 Die Exponentialfunktion.-
I.3 Abgeschlossene Untergruppen von Gl(n,IK).-
I.4 Die Campbell-Hausdorff-Formel.-
I.5 Analytische Untergruppen.-
I.6 Bogenzusammenhängende Gruppen.-
I.7 Homomorphismen.-
I.8 Fundamentalgruppen und Überlagerungen.-
I.9 Einfach zusammenhängende Überlagerungsgruppen.- II Lie-Algebren.-
II.1 Definitionen und Beispiele.-
II.2 Nilpotente und auflösbare Lie-Algebren.-
II.3 Halbeinfache Lie-Algebren.-
II.4 Erweiterungen und Moduln.-
II.5 Lie-Algebra-Kohomologie.-
II.6 Einhüllende Algebren.-
II.7 Der Satz von Ado.- III Strukturtheorie von Lie-Gruppen.-
III.1 Analytische Mannigfaltigkeiten.-
III.2 Die Lie-Algebra und die Exponentialfunktion.-
III.3 Anwendungen der Exponentialfunktion.-
III.4 Das Haarsche Maß.-
III.5 Lie-Gruppen mit kompakter Lie-Algebra.-
III.6 Halbeinfache Lie-Gruppen.-
III.7 Maximal kompakte Untergruppen, das Zentrum und Mannigfaltigkeitsfaktoren.-
III.8 Dichte analytische Untergruppen.-
III.9 Komplexe Lie-Gruppen.-
III.10 Charakterisierung der linearen Lie-Gruppen.-
III.11 Anwendung der Theorie auf die Klassischen Gruppen.- Anhang: Topologische Grundlagen.- Lehrbücher über Lie-Gruppen und Algebren.- Symbolverzeichnis.

About the author

Joachim Hilgert forscht und lehrt am Institut für Mathematik der Universität Paderborn.

Summary

Dieses Buch versteht sich als Einführung in die Theorie der Lie-Gruppen. Der Begriff der Lie-Gruppen wird ausgehend von den einfachsten Beispielen, den Matrizengruppen, entwickelt. Eine große Anzahl von Problemen für Lie-Gruppen kann man durch Übertragung auf die zugehörigen Lie-Algebren lösen. Dies ist der Leitgedanke des Buches. Vorausgesetzt werden Kenntnisse in der Linearen Algebra, der Differentialrechnung mehrerer Variablen und der elementaren Gruppentheorie.

Product details

Authors Joachi Hilgert, Joachim Hilgert, Karl-Hermann Neeb
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1991
 
EAN 9783528064327
ISBN 978-3-528-06432-7
No. of pages 361
Dimensions 162 mm x 21 mm x 228 mm
Weight 560 g
Illustrations X, 361 S. 1 Abb.
Subjects Humanities, art, music > Education > School education, didactics, methodology
Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, A, Education, Lineare Algebra, Language Education, Language and education, Matrizengruppen

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.