Fr. 46.50

Projektive Geometrie - Von den Grundlagen bis zu den Anwendungen

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Dieses Lehrbuch präsentiert projektive Geometrie, ein wichtiges klassisches Gebiet der Mathematik, in neuem Gewand: Ein Akzent liegt auf überraschenden und wichtigen Anwendungen von Geometrie in Codierungstheorie und Kryptographie. Dazu werden alle benötigten Teile der klassischen projektiven Geometrie (synthetische und analytische Geometrie, Quadriken) bereitgestellt.
Die zweite Auflage beinhaltet folgende zusätzliche Themen: WOM-Codes (Wie kann man ein nur einmal beschreibbares Medium "mehrfach beschreiben"?), Perspektive (Ursprung der projektiven Geometrie), Bewegliche Fachwerke (Wann erlaubt ein fest aussehendes Fachwerk infinitesimale Bewegungen?) und Polarräume (moderne, sehr erfolgreiche Theorie, die auf den in Kapitel 4 behandelten "quadratischen Mengen" aufbaut). Der Text wurde für die 2.Auflage gründlich überarbeitet, die Argumentation wurde klarer gemacht, viele kleine zusätzliche Textbeiträge und Übungsaufgaben wurden ergänzt.

List of contents

1 Synthetische Geometrie.- 1.1 Grundbegriffe.- 1.2 Die Axiome der projektiven Geometrie.- 1.3 Aufbau der projektiven Geometrie.- 1.4 Quotientengeometrien.- 1.5 Endliche projektive Räume.- 1.6 Affine Geometrie.- 1.7 Diagramme.- 1.8 Anwendung: Effiziente Kommunikation 39 Übungsaufgaben 41.- Richtig oder falsch? 48.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- 2 Analytische Geometrie.- 2.1 Der projektive Raum P(V).- 2.2 Der Satz von Desargues und der Satz von Pappos.- 2.3 Homogene und inhomogene Koordinaten.- 2.4 Das Hyperboloid.- 2.5 Rationale Normkurven.- 2.6 Die Moulton-Ebene.- 2.7 Räumliche Geometrien sind desarguessch.- 2.8 Anwendung: Ein Verkabelungsproblem.- Übungsaufgaben.- Richtig oder falsch?.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- 3 Die Struktursätze oder Wie lassen sich projektive und affine Räume gut beschreiben?.- 3.1 Zentralkollineationen.- 3.2 Die Gruppe der Translationen.- 3.3 Der Schiefkörper.- 3.4 Die ersten Struktursätze.- 3.5 Die zweiten Struktursätze.- 3.6 Projektive Kollineationen.- Übungsaufgaben.- Richtig oder falsch?.- Sie sollten mit folgenden Begriffen umgehen können:.- 4 Quadratische Mengen.- 4.1 Grundlegende Definitionen.- 4.2 Der Index einer quadratischen Menge.- 4.3 Quadratische Mengen in Räumen kleiner Dimension.- 4.4 Quadratische Mengen in endlichen projektiven Räumen.- 4.5 Elliptische, parabolische und hyperbolische quadratische Mengen.- 4.6 Die Kleinsche quadratische Menge.- 4.7 Quadriken.- 4.8 Plücker-Koordinaten.- 4.9 Fachwerke.- Übungsaufgaben.- Richtig oder falsch?.- Sie sollten mit folgenden Begriffen umgehen können:.- 5 Anwendungen von Geometrie in der Codierungstheorie.- 5.1 Grundlegende Begriffe der Codierungstheorie.- 5.2 Lineare Codes.- 5.3 Hamming-Codes.- 5.4MDS-Codes.- 5.5 Reed-Muller-Codes.- 5.6 WOM-Codes.- Übungsaufgaben.- Richtig oder falsch?.- Projekte.- Sie sollten mit folgenden Begriffen umgehen können:.- 6 Anwendungen von Geometrie in der Kryptographie.- 6.1 Grundlegende Begriffe der Kryptographie.- 6.2 Verschlüsselung.- 6.3 Authentifikation.- 6.4 Shared Secret Schemes.- 6.5 Speicherplatzreduktion für kryptographische Schlüssel.- Übungsaufgaben.- Projekt.- Sie sollten mit folgenden Begriffen umgehen können:.- Stichwortverzeichnis.- Symbolverzeichnis.

About the author

Professor Dr. Albrecht Beutelspacher, geb. 1950 in Tübingen, studierte Mathematik, Physik und Philosophie. Er war Professor an der Universität Mainz, drei Jahre bei Siemens, dort beteiligt an der Entwicklung der Telefonkarte. Seit 1988 lehrt er Mathematik an der Universität Gießen. Er entwickelte eine neue Prüfziffermethode für Banknoten. Professor Dr. Albrecht Beutelspacher ist Initiator und Leiter des 2002 gegründeten Mathematikums, des ersten Mathe-Mitmach-Museums in Gießen.

Summary

Dieses Lehrbuch präsentiert projektive Geometrie, ein wichtiges klassisches Gebiet der Mathematik, in neuem Gewand: Ein Akzent liegt auf überraschenden und wichtigen Anwendungen von Geometrie in Codierungstheorie und Kryptographie. Dazu werden alle benötigten Teile der klassischen projektiven Geometrie (synthetische und analytische Geometrie, Quadriken) bereitgestellt.

Die zweite Auflage beinhaltet zusätzliche neue interessante Anwendungen der Projektiven Geometrie, z.B. WOM-Codes (Wie kann man ein nur einmal beschreibbares Medium "mehrfach beschreiben"?) und Bewegliche Fachwerke (Wann erlaubt ein fest aussehendes Fachwerk infinitesimale Bewegungen?). Der Text wurde für die 2. Auflage gründlich überarbeitet, die Argumentation klarer gemacht, viele kleine zusätzliche Textbeiträge und Übungsaufgaben wurden ergänzt.

Product details

Authors Albrech Beutelspacher, Albrecht Beutelspacher, Ute Rosenbaum
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.2004
 
EAN 9783528172411
ISBN 978-3-528-17241-1
No. of pages 265
Dimensions 170 mm x 18 mm x 239 mm
Weight 478 g
Illustrations X, 265 S. 25 Abb.
Series Vieweg Studium
Aufbaukurs Mathematik
Vieweg Studium; Aufbaukurs Mathematik
Vieweg Studium
Aufbaukurs Mathematik
vieweg studium; Aufbaukurs Mathematik
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.