Fr. 66.00

Einführung in die Symplektische Geometrie

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Die symplektische Geometrie ist ein derzeit sehr aktives Gebiet, auf demviele verschiedene Zweige der Mathematik zusammenwirken, insbesondere Differentialgeometrie, Differentialgleichungen, komplexe Analysis und Darstellungstheorie. Sie ist, zugleich parallel und komplementär zur Riemannschen Geometrie, Grundlage für die Beschreibung des Hamiltonformalismus in der klassischen Mechanik und von Quantisierungsprozessen in der Quantenmechanik und u.a. für das Studium gewisser Singularitäten bei der Quotientenbildung symplektischer und Kählerscher Mannigfaltigkeiten sowie für die Theorie der Siegelschen Modulfunktionen und Abelschen Varietäten.

List of contents

0 Einige Aspekte der Theoretischen Mechanik.- 0.1 Die Lagrangeschen Gleichungen.- 0.2 Die Hamiltonschen Gleichungen.- 0.3 Die Hamilton-Jacobi-Gleichung.- 0.4 Eine symplektische Umdeutung.- 0.5 Die Hamiltonschen Gleichungen via Poissonklammer.- 0.6 Zur Quantisierung.- 1 Symplektische Algebra.- 1.1 Symplektische Vektorräume.- 1.2 Symplektische Abbildungen, die symplektische Gruppe.- 1.3 Unterräume symplektischer Vektorräume.- 1.4 Komplexe Strukturen in reellen symplektischen Räumen.- 2 Symplektische Mannigfaltigkeiten.- 2.1 Symplektische Mannigfaltigkeiten und ihre Morphismen.- 2.2 Der Satz von Darboux.- 2.3 Das Kotangentialbündel.- 2.4 Kähler-Mannigfaltigkeiten.- 2.5 Koadjungierte Bahnen.- 2.6 Der komplexe projektive Raum.- 2.7 Symplektische Invarianten (Ein Ausblick).- 3 Hamiltonsche Vektorfelder und Poissonklammern.- 3.1 Hilfsmittel.- 3.2 Hamiltonsche Systeme.- 3.3 Poissonklammern.- 3.4 Kontaktmannigfaltigkeiten.- 4 Die Impulsabbildung.- 4.1 Definitionen.- 4.2 Konstruktionen und Beispiele.- 4.3 Reduktion des Phasenraumes bei Vorliegen von Symmetrie.- 5 Quantisierung.- 5.1 Homogene quadratische Polynome und die 2.- 5.2 Polynome vom Grad 1 und die Heisenberggruppe.- 5.3 Polynome vom Grad 2 und die Jacobigruppe.- 5.4 Das Theorem von Groenwald - van Hove.- 5.5 Zum allgemeinen Fall.- A Anhang.- A.1 Differenzierbare Mannigfaltigkeiten und Vektorbündel.- A.2 Liegruppen und Liealgebren.- A.3 Etwas Kohomologietheorie.- A.4 Darstellungen von Gruppen.- Symbolverzeichnis.

About the author

Prof. Dr. Rolf Berndt ist am Mathematischen Seminar der Universität Hamburg tätig.

Summary

Die symplektische Geometrie ist ein derzeit sehr aktives Gebiet, auf dem viele verschiedene Zweige der Mathematik zusammenwirken, insbesondere Differentialgeometrie, Differentialgleichungen, komplexe Analysis und Darstellungstheorie. Sie ist, zugleich parallel und komplementär zur Riemannschen Geometrie, Grundlage für die Beschreibung des Hamiltonformalismus in der klassischen Mechanik und von Quantisierungsprozessen in der Quantenmechanik und u.a. für das Studium gewisser Singularitäten bei der Quotientenbildung symplektischer und Kählerscher Mannigfaltigkeiten sowie für die Theorie der Siegelschen Modulfunktionen und Abelschen Varietäten.

Product details

Authors Rolf Berndt
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1998
 
EAN 9783528031022
ISBN 978-3-528-03102-2
No. of pages 185
Weight 320 g
Illustrations XII, 185 S.
Series Advanced Lectures in Mathematics
Advanced Lectures in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

A, geometry, Mathematics and Statistics, Vektorfelder, theoretische Mechanik

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.