Fr. 77.00

Vorlesungen über die Theorie der Polyeder - unter Einschluß der Elemente der Topologie

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

List of contents

Erster Abschnitt. Historische Übersicht über die Entwicklung der Lehre von den Polyedern..-
1. Definition.-
2. Euler als Begründer der Morphologie der Polyeder.-
3. Einteilung der konvexen Polyeder in Klassen nach den Werten von e und f.-
4. Einführung der Zahlen eiund fi.-
5. Einige Beweise des Eulerschen Satzes.-
6. Kritik des Eulerschen Satzes. Anfänge der Analysis situs.-
7. Die Anfänge der Analysis situs.-
8. Einseitige Flächen.-
9. Ebene Polygone. Art eines Polygons.-
10. Der Flächeninhalt ebener Polygone.-
11. Der allgemeine Polyederbegriff und der Inhalt eines Polyeders.-
12. Seite und Indikatrix.-
13. Invarianten der Flächentopologie.-
14. Geschlossene Schnitte und Querschnitte.-
15. Die Darstellung der Flächentypen in verschiedenen Räumen.-
16. Cauchys Satz über konvexe Polyeder.-
17. Legendres Bestimmung der Konstantenzahl eines Polyeders.-
18. Schematische Darstellung der Polyedertypen. Reziprozität.-
19. Konstruktive Ableitung der konvexen (f+l)-Flache aus den f-Flachen.-
20. Konvexe Dreikants- und Dreieckspolyeder.-
21. Kontinuitätsbetrachtungen bei konvexen Dreikantspolyedern.-
22. Das allgemeine Problem der kombinatorischen Aufstellung der Typen konvexer Polyeder.- Zweiter Abschnitt. Polyedrische Komplexe..- 1. Kapitel. Polyedrische Komplexe..- 2. Kapitel. Topologische Äquivalenz normaler polyedrischer Komplexe..- 3. Kapitel. Polyeder im engeren Sinne..- Dritter Abschnitt. Geometrische Realisierung der Polyeder..- 1. Kapitel. Analytisch-geometrische Methoden..- 2. Kapitel. Rein geometrische Methoden..- 3. Kapitel. Rein geometrische Methoden (Fortsetzung)..- Namen- und Sachverzeichnis.

Product details

Authors H. Rademacher, E. Steinitz, Ernst Steinitz
Assisted by Han Rademacher (Editor), Hans Rademacher (Editor)
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 22.09.2013
 
EAN 9783642656101
ISBN 978-3-642-65610-1
No. of pages 352
Dimensions 155 mm x 235 mm x 19 mm
Weight 557 g
Illustrations VIII, 352 S.
Series Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.